Math, asked by MichWorldCutiestGirl, 19 days ago

The volume of a cuboid is 420 cubic cm. Find the surface area of ​​the cuboid if its breadth and height are 7 cm and 5 cm respectively.

Spammed answer report on the spot...​

Answers

Answered by akanksha0611
6

Step-by-step explanation:

Volume of Cuboid = 420 cm³

Breadth of Cuboid = 7 cm

Height of Cuboid = 5 cm

To Find :

Surface Area of Cuboid = ?

Solution :

~ Formula Used

Surface used:

Where :

➻ L = Length

➻ B = Breadth or Width

➻ H = Height

➻ TSA = Total Surface Area

~ Calculating the Surface Area

⟹TSA(Cuboid)=2(lb+bh+hl) :

⟹TSA(Cuboid)=2[(12×7)+(7×5)+(5×12)]

⟹TSA(Cuboid)=2(84+35+60) :

⟹TSA(Cuboid)=2×179

Surface Area of the Cuboid =  358 cm² 

Hope it helps

Answered by BrainlyResearcher
62

Question-

The volume of a cuboid is 420 cubic cm. Find the surface area of the cuboid if its breadth and height are 7 cm and 5 cm respectively.

\begin{gathered} \\ {\underline{\rule{200pt}{3pt}}} \end{gathered}

{\large{\underline{\frak{Required\:Answer}}}}

{\underline{\bf{358cm^2}}}

\begin{gathered} \\ {\underline{\rule{200pt}{3pt}}} \end{gathered}

Given-

  • Volume of cuboid={\sf{420cm^3}}
  • breadth of cuboid=7 cm
  • height of cuboid=5cm

\begin{gathered} \\ {\underline{\rule{200pt}{3pt}}} \end{gathered}

To find-

  • Surface area of cuboid

\begin{gathered} \\ {\underline{\rule{200pt}{3pt}}} \end{gathered}

{\Large{\underline{\underline{\sf{\maltese Formula\:Using}}}}}

~Volume of cuboid-

{\large{\underline{\boxed{\red{\sf{v_{(cuboid)}=lbh}}}}}}

~Surface Area of cuboid

{\large{\underline{\boxed{\red{\sf{SA_{(cuboid)}=2(lb+bh+hl)}}}}}}

Here:

  • v=volume
  • SA=Surface Area
  • l=length
  • b=breadth
  • h=height

\begin{gathered} \\ {\underline{\rule{200pt}{3pt}}} \end{gathered}

{\Large{\underline{\underline{\bf{Solution}}}}}

\begin{gathered} \\ \qquad{\rule{150pt}{1pt}} \end{gathered}

{\Large{\underline{\underline{\frak{~Calculating\:Length\:of\:cuboid}}}}}

{\pink{\dashrightarrow}{\qquad{\quad{\sf{v_{(cuboid)}=lbh}}}}}

{\pink{\dashrightarrow}{\qquad{\quad{\sf{420 cm^3_{(cuboid)}=l \times 7 \times 5}}}}}

{\pink{\dashrightarrow}{\qquad{\quad{\sf{420_{(cuboid)}=l \times 35}}}}}

{\pink{\dashrightarrow}{\qquad{\quad{\sf{l=\dfrac{420}{35}}}}}}

{\pink{\dashrightarrow}{\qquad{\quad{\sf{l=\cancel\dfrac{420}{35}=12}}}}}

{\blue{\rightsquigarrow}{\qquad{\quad{\underline{\red{\sf{Length\:of\:cuboid=12\:cm}}}}}}}

\begin{gathered} \\ \qquad{\rule{150pt}{1pt}} \end{gathered}

{\Large{\underline{\underline{\frak{~Calculating\:Surface\:Area\:of\:cuboid}}}}}

{\red{\dashrightarrow}{\qquad{\quad{\sf{SA_{(cuboid)}=2(lb+bh+hl)}}}}}

{\red{\dashrightarrow}{\qquad{\quad{\sf{SA_{(cuboid)}=2[(12 \times 7)+(7 \times 5)+(5 \times 12)])}}}}}

{\red{\dashrightarrow}{\qquad{\quad{\sf{SA_{(cuboid)}=2(84+35+60)}}}}}

{\red{\dashrightarrow}{\qquad{\quad{\sf{SA_{(cuboid)}=2\times 179}}}}}

{\red{\dashrightarrow}{\qquad{\quad{\sf{SA_{(cuboid)}=2\times 179}}}}}

{\blue{\rightsquigarrow}{\qquad{\quad{\purple{\sf{SA_{(Cuboid)}=358}}}}}}

\begin{gathered} \\ \qquad{\rule{150pt}{1pt}} \end{gathered}

\begin{gathered} \\ {\underline{\rule{200pt}{3pt}}} \end{gathered}

Therefore

{\large{\underline{\bf{\bigstar Surface\:Area\:of\:given\:cuboidis\:358cm^2}}}}

\begin{gathered} \\ {\underline{\rule{200pt}{3pt}}} \end{gathered}

Similar questions