Math, asked by Scon, 8 months ago

the volume of a cylinder having height twice the radius is 17248 cm^3. what minimum square cm paper is needed to cover the curved surface area of the cylinder.

Answers

Answered by Mihir1001
33
\huge{\underline{\mathfrak{\textcolor{blue}{Answer :}}}} \Large{\underline{\boxed{2464 \: {cm}^{2} }}}
\huge{\underline{\mathrm{\textcolor{red}{Step-by-step \: \: explanation :}}}}

\LARGE{\underline{\mathtt{\textcolor{violet}{Given :-}}}}
⚪ Volume of cylinder,  \sf v = 17248 \: {cm}^{3}
⚪ ( Height of cylinder ) = 2 ( radius of cylinder ) , i.e.: \boxed{h = 2r}

\LARGE{\underline{\mathtt{\textcolor{green}{To \: \: find :-}}}}
⚪ Minimum CSA

\LARGE{\underline{\mathtt{\textcolor{teal}{Concept \: \: used :-}}}}
⏺ Volume & Surface area of Solids ⏺

\LARGE{\underline{\mathtt{\textcolor{blue}{Solution :-}}}}

✒ let r and h be the radius and height of the cylinder respectively.

Therefore, h = 2r

Now,
 \rm \qquad volume = 17248 \: {cm}^{3} \\ \\ \implies\pi {r}^{2} h = 17248 \\ \\ \implies\pi \times r \times r \times 2r = 17248 \qquad( \sf \because \: h = 2r) \\ \\ \implies2\pi {r}^{3} = 17248 \\ \\ \implies 2 \times \frac{22}{7} \times {r}^{3} = 17248 \\ \\ \implies {r}^{3} = \frac{ {}^{784} \cancel{17248} \times 7}{ \cancel{22} \times 2} \\ \\ \qquad \quad \: \: \: = \frac{ {}^{392} \cancel{784} \times 7}{ \cancel{2}} \\ \\ \qquad \quad \: \: \: = 392 \times 7 \\ \\ \implies {r}^{3} = 2744 \\ \\ \implies \sqrt[3]{ {r}^{3} } = \sqrt[3]{2744} \\ \\ \implies \: r = 14 \: \sf \: cm

Thus,
 \qquad \: h = 2r \\ \implies \: h = 2(14 \: cm) \\ \implies \: h = 28 \: cm

Hence, CSA
 = 2\pi rh \\ = 2 \times \frac{22}{7} \times 14 \times 28 \\ = \frac{2 \times 22 \times 14 \times \cancel{28} \: {}^{4} }{ \cancel{7}} \\ = 44 \times 56 \\ = 2464 \: {cm}^{2}

\LARGE{\underline{\mathtt{\textcolor{magenta}{Conclusion :-}}}}
⚪ Minimum square cm of paper needed is 2464 \: \sf {cm}^{2} .

{\textcolor{purple}{\fcolorbox{teal}{cyan}{Your \: required \: answer \: is \: above......... keep \: smiling........ ;-D}}}
.
.
.
.
.
.
.
\bold{hope………. \: this \: answer \: helps \: you \: the \: best .}
and…… mark this answer as ❤BRAINLIEST❤
and. ….. If you can… .then
...follow me !!!!
Thanks for reading…………………………………………………….. =)
\huge{\fcolorbox{orange}{orange}{brainliest answer}}
Similar questions