Math, asked by itzlonelyqueen, 6 months ago

The volume of a cylinder is 150 cm and height is 6 cm. Find the areas of it's total surface and (lateral) curved surface.​

Answers

Answered by Anonymous
75

\large{\underline{\sf{\red{Required\:Answer:}}}}

  • \large\boxed{\underline{{\sf 188.57 \: cm ^{2}}}}

Given:-

  • The volume of cylinder = \sf{ 150\pi cm^{3}}

  • Height of cylinder = 6 cm.

To Find:-

  • Find it's TSA (total surface area) and LSA (lateral surface area).

Solution:-

  • Let the radius of cylinder be r cm.

We know that,

{\boxed{{\sf{Volume \: of \: cylinder = \pi r ^{2}h}}}}

\pink{\implies\:\:} {\sf{ 150\pi = \pi r^{2}h }}

\pink{\implies\:\:} {\sf{ \dfrac{150\pi}{\pi}  = r ^{2} (6)}}

\pink{\implies\:\:} {\sf{\dfrac{150}{6}  = r ^{2} }}

\pink{\implies\:\:} {\sf{  25 =  {r}^{2} }}

\pink{\implies\:\:} {\sf{  \sqrt{25}  =  {r}}}

\pink{\implies\:\:} {\sf{  5  =  {r}}}

So, the radius of the cylinder = 5 cm.

  • {\boxed{\red{\sf{ \:TSA = 2\pi r(h + r)}}}}

\purple{\implies\:\:} {\sf{TSA = 2( \frac{22}{7} )(5)(6 + 5)}}

\purple{\implies\:\:} {\sf{ \dfrac{44}{7} (5)(11)}}

\purple{\implies\:\:} {\sf{   \dfrac{44}{7} (55)}}

\purple{\implies\:\:} {\sf{  345.71  \:  {cm}^{2} }}

  • {\boxed{\red{\sf{ \:LSA = 2\pi rh  }}}}

\blue{\implies\:\:} {\sf{LSA = 2( \dfrac{22}{7} )(5)(6)}}

\blue{\implies\:\:} {\sf{ \dfrac{44}{7} (30)}}

\blue{\implies\:\:} {\sf{ \dfrac{1320}{7} }}

\blue{\implies\:\:} {\sf{188.57 \: cm ^{2} }}


Cynefin: Great! :D
Answered by Ꮪαɾα
1

volume of cylinder =150 pi cu.cm

height of cylinder =6 cm

volume of cylinder =pi r^2 h

pi r^2 h =150 pi

r^2 (6)=150

r^2 =25

r=5

surface area =2pi r (r+h)

                   =2pi (5)(5+6)

                    =2pi(5)(11)

                     =2pi x 55

                     =110 pi

lateral surface area =2 pi rh

                               2 pi (5)(6)

                              =2pi(30)

                              =60 pi

Similar questions