Math, asked by babbhaiysc, 8 hours ago

The volume of a cylinder is 2376 cu.cm .If the radius of the base of the cylinder is 6cm, then the height of the cylinder is (a) 28cm (b) 24cm (c) 21cm (d) 22cm​

Answers

Answered by Anonymous
18

\large\underline{\underline{\maltese{\red{\pmb{\sf{\:  Given :-}}}}}}

  • ➬ Volume of cylinder = 2376 cm³
  • ➬ Radius of base = 6 cm

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

\large\underline{\underline{\maltese{\gray{\pmb{\sf{\:  To  \: Find :-}}}}}}

  • ➬ Height of cylinder = ?

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

\large\underline{\underline{\maltese{\orange{\pmb{\sf{\: Solution  :-}}}}}}

Formula Used :

\large{\blue{\bigstar}} \:  \: {\underline{\boxed{\red{\sf{Volume{\small_{(Cylinder) }} = π r² h}}}}}

Here :

  • ➳ Volume = 2376 cm³
  • ➳ π = pi = 22/7
  • ➳ r = Radius = 6 cm
  • ➳ h = Height = ?

\qquad{━━━━━━━━━━━━━━━}

Finding the Height :

\qquad{:\longmapsto{\sf{ Volume = π r²h}}}

\qquad{:\longmapsto{\sf{ 2376 =  \dfrac{22}{7}  \times  (6)² \times h}}}

\qquad{:\longmapsto{\sf{ 2376 =  \dfrac{22}{7}  \times  36 \times h}}}

\qquad{:\longmapsto{\sf{ 2376  \times 7=  {22}  \times  36 \times h}}}

\qquad{:\longmapsto{\sf{ 16632= 792 \times h}}}

\qquad{:\longmapsto{\sf{  h =  \dfrac{16632}{792} }}}

\qquad{:\longmapsto{\sf{  h =\cancel  \dfrac{16632}{792} }}}

\large\qquad{\color{maroon}{:\longmapsto{\underline{\boxed{\sf{H = 21\: cm }}}}}}{\pink{\bigstar}}

\qquad{━━━━━━━━━━━━━━━}

Therefore :

❝ Height of the cylinder is 21 cm.

{\green{\underline{▬▬▬▬▬}}{\pink{\underline{▬▬▬▬▬}}{\orange{\underline{▬▬▬▬▬}}{\purple{\underline{▬▬▬▬▬▬}}}}}}

Answered by Atlas99
41

Solution:

Volume of a cylinder = 2376cm³

Radius of a cylinder = 6cm

Height of a cylinder = ?

\large\tt{Volume_{[cylinder]}}=\pi{r}^{2}h \\

 \tt \implies{h= \dfrac{V}{\pi{r}^{2}}}

  \tt\implies{h =\dfrac{2376} {\dfrac{22}{7} \times 6^{2} }}

\tt\implies{h =  \dfrac{2376}{ \dfrac{22}{7} \times 6 \times 6}}

\tt\implies{h = \dfrac{2376}{ \dfrac{792}{7} } }

\tt\implies{h =  \dfrac{2376}{113.14}}

\tt\implies{h =  \dfrac{2376 \times 100}{11314} }

\tt\implies \: h = \cancel{ \dfrac{237600}{11314} }

\tt\implies{h  = \cancel{\dfrac{118800}{5657}}}

\tt\implies{h = 21cm}

∴ Height of a cylinder = 21cm.

Hence, option (c) is the correct answer.

\rule{200pt}{2pt}

Important Formulas

CSA of cube = 4a²

TSA of cuboid = 2(lb + bh + hl)

SA of sphere = 4πr²

CSA of cuboid = 2(l+b)h

CSA of cone = πrl

A of semicircle = 1/2 × π(r)²

A of circle = π(r)²

A of parallelogram = b×h

A of rhombus = 1/2 × d1 × d2

A of trapezium = 1/2×h(a+b)

Area sector of a circle = πr² × θ/360.

\underline{\rule{200pt}{4pt}}

Similar questions