Math, asked by arbazkhan052, 4 months ago

the volume of a cylinder is 2500π cm³ and its height is 49 cm. Find the total surface area and lateral surface area of the cylinder

Answers

Answered by Brâiñlynêha
85

Given :-

Volume of cylinder= 2500π cm³

Height of cylinder= 49cm

To Find :-

We have to find the TSA and CSA of cylinder

Solution :-

\implies\sf\ TSA\ of\ cylinder= 2\pi r(h+r)\\ \\ \\ \sf\  CSA\ of\ cylinder= 2\pi r h

Now ,

\implies\sf\ Volume\ of\ cylinder= \pi r^2 h\\ \\ \\ :\implies\sf\ \cancel{\pi} r^2\times 49= 2500\cancel{\pi} \\ \\ \\ :\implies\sf\ r^2= \dfrac{2500}{49}\\ \\ \\ :\implies\sf\ r= \sqrt{\dfrac{2500}{49}}\\ \\ \\ :\implies\underline{\boxed{\sf\ r=\dfrac{50}{7}}} \ cm

  • Find the CSA of cylinder

:\implies\sf\ CSA= 2\pi rh\\ \\ \\ :\implies\sf\ \ CSA= 2\times \dfrac{22}{7}\times \dfrac{50}{7}\times 49\\ \\ \\ :\implies\sf\ CSA= \dfrac{2\times 22\times 50\times \cancel{49}}{\cancel{7\times 7}}\\ \\ \\ :\implies\sf\ CSA= 44\times 50\\ \\ \\ \implies\underline{\boxed{\sf\ CSA=2200cm^2}}

Now total surface area of cylinder

:\implies\sf\ TSA= CSA+ 2\times Area\ of\ circle\\ \\ \\ :\implies\sf\ TSA= 2\pi r h+ 2(\pi r^2)\\ \\ \\ :\implies\sf\ TSA= 2200+ \bigg(2\times \dfrac{22}{7}\times \dfrac{50}{7}\times \dfrac{50}{7}\bigg)\\ \\ \\ :\implies\sf\ TSA= 2200+\bigg(\dfrac{44\times 2500}{49}\bigg)\\ \\ \\ :\implies\sf\ TSA=2200+\bigg(\cancel{\dfrac{110000}{49}}\bigg)\\ \\ \\ :\implies\sf\ TSA= 2200+2244.89\\ \\ \\ :\implies\underline{\boxed{\sf\ TSA= 4444.89cm^2}}

Answered by Anonymous
47

Given :-

  • The volume of a cylinder is 2500π cm³

  • Height of cylinder is 49 cm

To Find :-

The total surface area and lateral surface area of the cylinder

Calculation :

Let the radius of the base and height of the cylinder be r cm and h cm respectively.

Then, h = 7cm ( given )

Now,

Volume = 2500π cm³

⟹  \:  πr^{2} h = 2500π \\ \\  ⟹ \: π \times  {r}^{2}  \times 49 = 2500π \\  \\ ⟹  {r}^{2}  =  \frac{2500}{49} \\  \\ ⟹  \:  {r} =  \frac{50}{7}  \\  \\ ∴ \: lateral  \:   \: \: surface \: \:  area = 2πrh \:  {cm}^{2}   \\  \\ = 2 \times  \frac{22}{7}  \times  \frac{50}{7} \times 49   \\  \\  = 2200  \: {cm}^{2}  \\  \\ total \:  \: surface  \: \: area = (2πrh + 2π {r}^{2} ) \:  {cm}^{2}  \\  \\  = 2πr(h + r) \:  {cm}^{2}  \\   \\ = 2200 + (2 \times  \frac{22}{7}  \times  \frac{50}{7}  \times  \frac{50}{7} ) \\  \\  = 2200 +  (\frac{11000}{49} ) \\ \\   = 2200 + 2244.89 \\  \\  = 4444.89 \:  {cm}^{2}

Similar questions