Math, asked by sagacioux, 1 month ago

the volume of a cylinder is 448π cm³ and height 7cm. find its diameter..​

Answers

Answered by WaterFairy
27

\huge{\mathtt{{\red{\boxed{\tt{\pink{\orange{Ans}\purple{wer}}}}}}}}

\sf{\underline{\overline{\red{Given\::-}}}}

•Volume of a cylinder----

448\pi {cm}^{3}

•Height of the cylinder=7cm

\sf{\underline{\overline{\pink{To\:Find\::-}}}}

•Diameter of the cylinder

\sf{\underline{\overline{\orange{Solution\::-}}}}

We know that volume of a cylinder is -----

= > \pi {r}^{2} h

= > \pi \times {r}^{2} \times 7 = 448\pi

= > {r}^{2} = \frac{448\pi}{7\pi}

= > {r}^{2} = 64

= > r = \sqrt{64}

= > r \:= 8\:cm\:

Thus,radius of the cylinder is 8cm

Hence,diameter=2(8)

=>16cm

Answered by Anonymous
65

Answer:

Diagram :

\setlength{\unitlength}{1mm}\begin{picture}(5,5)\thicklines\multiput(-0.5,-1)(26,0){2}{\line(0,1){40}}\multiput(12.5,-1)(0,3.2){13}{\line(0,1){1.6}}\multiput(12.5,-1)(0,40){2}{\multiput(0,0)(2,0){7}{\line(1,0){1}}}\multiput(0,0)(0,40){2}{\qbezier(1,0)(12,3)(24,0)\qbezier(1,0)(-2,-1)(1,-2)\qbezier(24,0)(27,-1)(24,-2)\qbezier(1,-2)(12,-5)(24,-2)}\multiput(18,2)(0,32){2}{\sf{8\ cm}}\put(9,17.5){\sf{7\ cm}}\end{picture}

\begin{gathered}\end{gathered}

Given :

  • Volume of cylinder = 448π cm³.
  • Height of cylinder = 7 cm.

\begin{gathered}\end{gathered}

To Find :

  • Diameter of cylinder

\begin{gathered}\end{gathered}

Solution :

☼ Here, I am doing the solution by two methods.

\star \: {\underline{\underline{\sf{ \red{First  \: Method \::}}}}}

☼ Finding the radius of cylinder by substituting the values in the formula :-

{\longrightarrow{\small{\underline{\boxed{\pmb{\sf{V =  \pi {r}^{2} h}}}}}}}

☼ Where :-

  • V = Volume
  • π = 22/7
  • r = radius
  • h = height

☼ Now :-

{\longrightarrow{\small{\sf{V =  \pi {r}^{2} h}}}}

{\longrightarrow{\small{\sf{448 \pi =  \pi {r}^{2} 7}}}}

{\longrightarrow{\small{\sf{448 \times  \dfrac{22}{7} =   \dfrac{22}{7} \times  {r}^{2} \times 7}}}}

{\longrightarrow{\small{\sf{\cancel{448} \times  \dfrac{22}{\cancel{7}}=   \dfrac{22}{\cancel{7}}\times  {r}^{2} \times  \cancel{7}}}}}

{\longrightarrow{\small{\sf{64 \times 22= 22{r}^{2} }}}}

{\longrightarrow{\small{\sf{1408= 22{r}^{2} }}}}

{\longrightarrow{\small{\sf{{r}^{2}  =  \dfrac{1408}{22}}}}}

{\longrightarrow{\small{\sf{{r}^{2}  =   \cancel\dfrac{1408}{22}}}}}

{\longrightarrow{\small{\sf{{r}^{2}  =  64}}}}

{\longrightarrow{\small{\sf{r = \sqrt{64}}}}}

{\longrightarrow{\small{\sf{r  =  \sqrt{8 \times 8}}}}}

{\longrightarrow{\small{\underline{\underline{\sf{r  = 8 \: cm}}}}}}

{\longrightarrow{\small{\underline{\boxed{\sf{\pink{Radius = 8 \: cm}}}}}}}

∴ The radius of cylinder is 8 cm.

 \rule{200}2

☼ Now, finding the diameter of cylinder :-

{\longrightarrow{\small{\underline{\boxed{\pmb{\sf{d = 2r}}}}}}}

☼ Where :-

  • d = diameter
  • r = radius

☼ Now :-

{\longrightarrow{\small{\sf{d = 2r}}}}

{\longrightarrow{\small{\sf{d = 2 \times 8}}}}

{\longrightarrow{\small{\underline{\underline{\sf{d  = 16 \: cm}}}}}}

{\longrightarrow{\small{\underline{\boxed{\sf{\pink{Diameter = 16 \: cm}}}}}}}

∴ The diameter of cylinder is 16 cm.

\begin{gathered}\end{gathered}

\star \: {\underline{\underline{\sf{\red{Second\: Method \::}}}}}

☼ Finding the diameter of cylinder by substituting the values in formula :-

{\longrightarrow{\small{\underline{\boxed{\pmb{\sf{d= 2 \times  \sqrt{\dfrac{v}{{\pi}h}}}}}}}}}

Now :-

{\longrightarrow{\small{\sf{d= 2 \times  \sqrt{\dfrac{v}{{\pi}h}}}}}}

{\longrightarrow{\small{\sf{d= 2 \times  \sqrt{\dfrac{448 \pi}{{\pi}h}}}}}}

{\longrightarrow{\small{\sf{d= 2 \times  \sqrt{\dfrac{448 \times  \dfrac{22}{7} }{\dfrac{22}{7} \times 7}}}}}}

{\longrightarrow{\small{\sf{d= 2 \times  \sqrt{\dfrac{\cancel{448} \times  \dfrac{22}{\cancel{7}}}{\dfrac{22}{\cancel{7}}\times  \cancel{7}}}}}}}

{\longrightarrow{\small{\sf{d= 2 \times  \sqrt{\dfrac{64 \times 22}{22}}}}}}

{\longrightarrow{\small{\sf{d= 2 \times  \sqrt{\dfrac{1408}{22}}}}}}

{\longrightarrow{\small{\sf{d= 2 \times \sqrt{\cancel{\dfrac{1408}{22}}}}}}}

{\longrightarrow{\small{\sf{d= 2 \times \sqrt{64}}}}}

{\longrightarrow{\small{\sf{d= 2 \times \sqrt{8 \times 8}}}}}

{\longrightarrow{\small{\sf{d= 2 \times 8}}}}

{\longrightarrow{\small{\underline{\underline{\sf{d  = 16 \: cm}}}}}}

{\longrightarrow{\small{\underline{\boxed{\sf{\pink{Diameter = 16 \: cm}}}}}}}

∴ The diameter of cylinder is 16 cm.

\begin{gathered}\end{gathered}

Learn More :

\begin{gathered}\begin{array}{|c|c|c|}\cline{1-3}\bf Shape&\bf Volume\ formula&\bf Surface\ area formula\\\cline{1-3}\sf Cube&\tt l^3}&\tt 6l^2\\\cline{1-3}\sf Cuboid&\tt lbh&\tt 2(lb+bh+lh)\\\cline{1-3}\sf Cylinder&\tt {\pi}r^2h&\tt 2\pi{r}(r+h)\\\cline{1-3}\sf Hollow\ cylinder&\tt \pi{h}(R^2-r^2)&\tt 2\pi{rh}+2\pi{Rh}+2\pi(R^2-r^2)\\\cline{1-3}\sf Cone&\tt 1/3\ \pi{r^2}h&\tt \pi{r}(r+s)\\\cline{1-3}\sf Sphere&\tt 4/3\ \pi{r}^3&\tt 4\pi{r}^2\\\cline{1-3}\sf Hemisphere&\tt 2/3\ \pi{r^3}&\tt 3\pi{r}^2\\\cline{1-3}\end{array}\end{gathered}

 \rule{200}2

Attachments:
Similar questions