The volume of a cylinder is 448πcm³ and height 7cm. Find its lateral curved surface area and total surface area? (π=22/7)
Answers
AnswEr:
Let the radius of the base and height of the cylinder be r cm and h cm respectively. Then, h = 7 cm (given)
Now,
- Volume = 448 π cm³
#BAL
#Answerwithquality
Answer:
Step-by-step explanation: Let the radius of the base and height of the cylinder be r cm and h cm respectively. Then, h = 7 cm (given)
Now,
Volume = 448 π cm³
\Rightarrow \tt{\pi\:r^2h\:448\pi}
\Rightarrow \tt{\pi\:\times\:r^2\times\:7=448\pi}
= \tt {r}^{2} = \dfrac{448}{7} = 64 = r = 8 \: cm
\therefore \tt\green{\underline{\underline{lateral\:surface\:area:-}}}
\tt = 2\pi \: rh \: {cm}^{2} \\ \\ \tt = 2 \times \frac{22}{7} \times 8 \times 7 \: {cm}^{2} = 352 \: {cm}^{2}
\therefore \tt\purple{\underline{\underline{Total\:surface\:area:-}}}
\tt(2\pi \: rh + 2\pi \: r {}^{2}) \: {cm}^{2} \\ \\ \tt = 2\pi \: r(h + r) \: {cm}^{2}
\tt = 2 \times \dfrac{22}{7} \times 8(7 + 8) \: {cm}^{2} \\ \\ \tt = \frac{5280}{7 } \: {cm}^{2} \\ \\ \tt = 754.28 \: {cm}^{2}
#winforwin
#Answerwithquality