Math, asked by sudhasingh4858, 1 year ago

the volume of a cylinder is 88 cm cube and its height is 63 cm find the curved surface area and it was surface area of the cylinder ​

Answers

Answered by Anonymous
22

Answer:

Step-by-step explanation: v=88

πr²h =88

r=2/3

csa=2πrh

       2x22/7x2/3x63

       264cm²

sa=2πrh+πr²h

     264+88

            352cm²

 #answer with quality #BAL

Answered by BrainIyMSDhoni
158

Answer:-

  • Curved surface area of the cylinder is 264 cm².
  • Total surface area is approx 266.79 cm².

Step-by-step explanation:

Given :–

Volume of cylinder = 88cm³

Height of the cylinder = 63 cm

To Find:-

(i) Curved surface area of the cylinder

(ii) Total Surface Area of the cylinder

As we know the formula for the volume of cylinder is πr²h where 'r' is the radius of the cylinder and 'h' is the height of the cylinder.

Therefore according to the question:-

 \rightarrow  \sf{ \pi {r}^{2}h = 88 {cm}^{3}} \\ \\ \rightarrow  \sf{} \frac{22}{7} \times  {r}^{2} \times 63 = 88 \\ \\ \rightarrow  \sf{ \frac{22}{7}  \times  {r}^{2}  =  \frac{88}{63} } \\ \\ \rightarrow  \sf{ {r}^{2}  =  \frac{ \cancel88}{ \cancel63}  \times  \frac{ \cancel7}{ \cancel22} } \\  \\ \rightarrow  \sf{ {r}^{2} =  \frac{4}{9} } \\  \\ \rightarrow  \sf{r =  \sqrt{ \frac{4}{9} } } \\ \\ \rightarrow  \sf \boxed{\red{{r =  \frac{2}{3} }}}

Now we can find values with the help of formula

(i) Curved surface area of cylinder = 2πrh

\rightarrow  \sf{2 \times  \frac{22}{7}  \times  \frac{2}{3}  \times 63} \\ \\ \rightarrow  \sf{ \frac{88}{ \cancel21}  \times  \cancel63} \\ \\ \rightarrow  \sf{88 \times 3} \\ \\ \rightarrow  \sf \boxed{ \green{{C.S.A = 264 \: {cm}^{2} }}}

(ii) T.S.A. of cylinder = 2πr(r + h)

\rightarrow \sf{2 \times  \frac{22}{7} \times  \frac{2}{3} \:  (\frac{2}{3}  + 63)}\\ \\ \rightarrow \sf{ \frac{88}{21} \: ( \frac{2 + 63 \times 3}{3} )} \\ \\ \rightarrow \sf{ \frac{88}{21} \: (\frac{2 + 189}{3}) } \\ \\ \rightarrow \sf{ \frac{88}{21} \times { \frac{191}{3} }} \\ \\ \rightarrow \sf{ \frac{16808}{63}} \\ \\ \rightarrow \sf \boxed{ \blue{{T.S.A. = 266.79 \: {cm}^{2} \:approx}}}

#answerwithquality #BAL

Similar questions