The volume of a cylinder is half of its total surface area. If the radius of its base is 7 cm, find the volume
Answers
Answer:
22cucm
Step-by-step explanation:
firstly we found total surface area of cylinder
total surface area=2πr
=2×22/7×7
=44 (7 and 7 get cancelled)
the volume of cylinder is half of its total surface area(given)
volume of cylinder = 1/2×44
=22
=22cucm
Answer :
- The volume of cylinder is 1437.34 cm³.
Given:
- The volume of a cylinder is half of its total surface area. If the radius of its base is 7 cm.
To Find :
- The volume of cylinder ?
Solution :
- The volume of cylinder be x.
Step 1,
- Radius of cylinder (r) = 7 cm
- Volume of cylinder (V) = πr²h
- Total surface area of cylinder (TSA) = 2πr(h + r)
Step 2,
- The volume of cylinder is half of its total surface area.
i.e., 1/2 × Volume of cylinder (V) = Total surface area of cylinder (TSA)
➛ 1/2 × πr²h = 2πr(h + r)
➛ πr²h/πr = 2[2(h + r)]
➛ rh = 4(h + r)
➛ rh = 4h + 4r
- r = 7 cm,
So,
➛ 7h = 4h + 4(7)
➛ 7h = 4h + 28
➛ 7h - 4h = 28
➛ 3h = 28
➛ h = 28/3
- Height of cylinder is = 28/3 cm.
Step 3,
- The volume of cylinder is πr²h.
i.e., Volume of cylinder is (V) = πr²h
➛ 22/7(7)²(28/3)
➛ 22/7 × 7 × 7 × 28/3
➛ 22 × 7 × 9.34
➛ 154 × 9.34
➛ 1437.34 cm³
Hence,
- The volume of cylinder is 1437.34 cm³.