Math, asked by PranzalRimal, 4 months ago

The volume of a cylindrical can is 3.08 liter. If the area of its base is 154 sq.cm. Find its curved surface area.
Please answer with a picture of clear explanation.

Attachments:

Answers

Answered by SuitableBoy
82

Answer:

 \\

\frak{Given}\begin{cases}\sf{Volume\:of\:Cylinder=\bf{3.08\:litre.}}\\\sf{Area\:of\:Base=\bf{154\:sq\:cm.}}\end{cases}

 \\

\underline{\bf{\bigstar\:To\:Find:-}}

 \\

  • The Curved Surface Area (CSA) .

 \\

\underbrace{\underline{\bf{\bigstar\:Required\:Solution:-}}}

 \\

» We are given with the area of base of cylinder, which is nothing else but the area of a circle, using this we would find the radius of the cylinder.

» Then, using the radius and the given volume, we would find the height of the cylinder.

» After finding the radius and height, using the formula, we would find the Curved surface Area of the cylinder.

 \\

Finding the radius of the cylinder

 \\

We have -

  • Area of base = 154 cm²

We know:

\odot\;\boxed{\sf Area_{\:circle}=\pi r^2}

So,

 \displaystyle \colon \rarr \sf \:  \cancel{154 }\:  {cm}^{2}  =   \dfrac{ \cancel{22}}{7}  \times  {r}^{2}  \\  \\   \displaystyle\colon \sf \rarr \: 7 \times 7 \:  {cm}^{2}  =  {r}^{2}  \\  \\  \colon \rarr \sf \: r =  \sqrt{7 \times 7 \:  {cm}^{2} }  \\  \\   \red{\colon \dashrightarrow} \boxed{ \frak{ \green{r = 7 \: cm}}}

 \\

Finding the height of the cylinder

 \\

We have :

  • Radius = 7cm
  • Volume = 3.08 litre = 3.08×1000 cm³ = 3080 cm³

We know :

\odot\;\boxed{\sf Volume_{\:cylinder}=\pi r^2h}

So,

 \displaystyle \colon \rarr \sf \:  \cancel{3080} \:  {cm}^{ 3}  =  \frac{ \cancel{22}} {7} \times  {(7 \: cm)}^{2}  \times h  \quad\\  \\  \displaystyle \colon \rarr \sf \: \cancel{ 140 }\:  {cm}^{3}  =  \frac{1}{ \cancel7}  \times  \cancel7 \: cm \times  \cancel7 \: cm \times h \\  \\  \colon  \sf\rarr \: 20 \:  \cancel {cm}^{3}  = h \:  \cancel {cm}^{2}  \\  \\   \red{\colon \dashrightarrow} \boxed{ \frak{ \purple{h = 20 \: cm}}}

 \\

Finding CSA of the cylinder

 \\

We have :

  • Radius = 7 cm
  • Height = 20 cm

We know :

\odot\;\boxed{\sf CSA_{\:cylinder}=2\pi rh}

So,

\displaystyle\colon\rarr\sf\: CSA=2\times \dfrac{22}{\cancel7}\times\cancel7 \times 20 \:cm^2\\ \\ \sf\colon\rarr \: 2\times 22\times 20 \: cm^2\\ \\ \red{\colon\dashrightarrow}\underline{\boxed{\bf{\pink{CSA=880\:cm^2}}}}

 \\

\therefore\;\underline{\sf The\:CSA\: of\:the\:cylinder=\bf{880\:cm^2.}}\\

 \\

_____________________________

Answered by kabitakumari5438
29

Answer:

 \red{\begin{gathered}\frak{Given}\begin{cases}\sf{Volume\:of\:Cylinder=\bf{3.08\:litre.}}\\\sf{Area\:of\:Base=\bf{154\:sq\:cm.}}\end{cases}\end{gathered}}

 \pink{\begin{gathered} \\ \end{gathered}\underline{\bf{\bigstar\:To\:Find:-}}}

The Curved Surface Area (CSA) .

 \green{\begin{gathered} \\ \end{gathered}\underbrace{\underline{\bf{\bigstar\:Required\:Solution:-}}}}

» We are given with the area of base of cylinder, which is nothing else but the area of a circle, using this we would find the radius of the cylinder.

» Then, using the radius and the given volume, we would find the height of the cylinder.

» After finding the radius and height, using the formula, we would find the Curved surface Area of the cylinder.

\begin{gathered} \\ \end{gathered}

◐ Finding the radius of the cylinder ◑

We have -

Area of base = 154 cm²

We know:

{\odot\;\boxed{\sf Area_{\:circle}=\pi r^2}}

So,

\begin{gathered} \displaystyle \colon \rarr \sf \: \cancel{154 }\: {cm}^{2} = \dfrac{ \cancel{22}}{7} \times {r}^{2} \\ \\ \displaystyle\colon \sf \rarr \: 7 \times 7 \: {cm}^{2} = {r}^{2} \\ \\ \colon \rarr \sf \: r = \sqrt{7 \times 7 \: {cm}^{2} } \\ \\ \red{\colon \dashrightarrow} \boxed{ \frak{ \green{r = 7 \: cm}}}\end{gathered}

◐ Finding the height of the cylinder ◑

We have :

◐ Finding the height of the cylinder

We have :Radius = 7cmVolume = 3.08 litre = 3.08×1000 cm³ = 3080 cm³We know :

 \blue{\odot\;\boxed{\sf Volume_{\:cylinder}=\pi r^2h}}

So,

\begin{gathered} \displaystyle \colon \rarr \sf \: \cancel{3080} \: {cm}^{ 3} = \frac{ \cancel{22}} {7} \times {(7 \: cm)}^{2} \times h \quad\\ \\ \displaystyle \colon \rarr \sf \: \cancel{ 140 }\: {cm}^{3} = \frac{1}{ \cancel7} \times \cancel7 \: cm \times \cancel7 \: cm \times h \\ \\ \colon \sf\rarr \: 20 \: \cancel {cm}^{3} = h \: \cancel {cm}^{2} \\ \\ \red{\colon \dashrightarrow} \boxed{ \frak{ \purple{h = 20 \: cm}}}\end{gathered}\begin{gathered} \\ \end{gathered}

◐ Finding CSA of the cylinder

 \\

We have :

Radius = 7 cm

Height = 20 cm

We know :

 \orange{\odot\;\boxed{\sf CSA_{\:cylinder}=2\pi rh}}

So,

\begin{gathered}\displaystyle\colon\rarr\sf\: CSA=2\times \dfrac{22}{\cancel7}\times\cancel7 \times 20 \:cm^2\\ \\ \sf\colon\rarr \: 2\times 22\times 20 \: cm^2\\ \\ \red{\colon\dashrightarrow}\underline{\boxed{\bf{\pink{CSA=880\:cm^2}}}}\end{gathered}</p><p>\begin{gathered} \\ \end{gathered}\begin{gathered}\therefore\;\underline{\sf The\:CSA\:of\:the\:cylinder=\bf{880\:cm^2.}}\\\end{gathered}

_____________________________

Similar questions