Math, asked by aronwilks06, 2 months ago

The volume of a cylindrical container is 125 cubic centimeters. the height of the container is 6 centimeters. Find the radius of the container. Round your answer to the nearest whole number.

Answers

Answered by MяMαgıcıαη
124

Understanding the question :

Here we have the volume of the cylindrical container, that is 125 cm³ and the height of the container is 6 cm. We have to find the radius of the container. So, here we will use the formula of volume of cylinder.

Let's do it !!

ㅤㅤㅤㅤㅤㅤ━━━━━━━━━

\underbrace{\underline{\sf{Required\:solution\::}}}

\:\::\mapsto\:\sf Volume_{(Container)}\:=\:\pi r^2 h

Values we have :

  • Volume of container is 125 cm³.
  • Height of container is 6 cm.

Putting all vaules :

\:\::\mapsto\:\sf 3.14\:\times\: r^2\:\times\: 6 \:=\: 125

\:\::\mapsto\:\sf r^2\:\times\: 18.8 \:=\: 125

\:\::\mapsto\:\sf r^2 \:=\:\dfrac{ 125}{18.8}

\:\::\mapsto\:\sf r^2 \:=\:{\dfrac{\cancel{ 125}}{\cancel{18.8}}}

\:\::\mapsto\:\sf r^2 \:=\: 6.6

\:\::\mapsto\:\sf r \:=\: \sqrt{6.6}

\:\::\mapsto\:\bold { r \:=\:\red{ 2.56\:cm}}

This is the required answer.

\large\underline{\boxed{\tt{ Radius\:of\:container\:\approx\:\rm\purple{3\:cm}}}}

Answered by Anonymous
4

Answer:

\bf Given \begin{cases} \bf Volume = \frak{125\: cm^3} \\ \bf Height = \frak{6 \: cm}\end{cases}

_____________________________

Now

We know that

 { \boxed { \red{ \underline{ \tt{Volume = \pi {r}^{2} h}}}}}

Let the radius be r

 \sf \: 125 =  \dfrac{22}{7}  \times  {r}^{2}  \times 6

 \sf \: 125 \times 7 = 22 \times  {r}^{2}  \times 6

 \sf \: 875 = 132 \times  {r}^{2}

 \sf \dfrac{875}{132} =  {r}^{2}

 \sf \: 6.63 =  {r}^{2}

 \sf \:  \sqrt{6.63 }  = r

 \sf \: 2.57 = r

Similar questions