Math, asked by Rohitlovesmath, 11 months ago

the volume of a cylindrical rod is 620 cm cube,its height is 20 cm then find its radius...​

Answers

Answered by Anonymous
16

❏ Question:-

@ The volume of a cylindrical rod is 620 cm cube,its height is 20 cm then find its radius...

❏ Solution:-

Given:-

• volume of the cylindrical rod is=620 cm³.

• height(h) of the cylinder rod is= 20 cm.

To Find:-

• The base radius of the cylindrical rod=?

Explanation:-

Let, base radius of the cylinder kal rod is = r cm.

Now , using the Formula,

\sf\longrightarrow Volume=\pi r{}^{2}h

\sf\longrightarrow 620=\frac{22}{7} \times r{}^{2}\times 20

\sf\longrightarrow \cancel{62}\cancel0\times\frac{7}{22}\times\frac{1}{\cancel2\cancel0}=r^2

\sf\longrightarrow\frac{31\times7}{22}=r^2

\sf\longrightarrow\sqrt{\frac{217}{22}}=r

\sf\longrightarrow\boxed{ \large{\red{r= 3.14 \:cm}}} (almost).

∴ Base radius of the cylindrical rod is =3.14 cm

━━━━━━━━━━━━━━━━━━━━━━━

❏ Formula Used:-

━━━━━━━━━━━━━━━━━━━━━━━

✦ CYLINDER✦

For a right circular cylinder of base radius r and height h,

\sf\longrightarrow\boxed{ L.S.A=2\pi r h}

\sf\longrightarrow\boxed{ T.S.A.=2\pi r (r+h)}

\sf\longrightarrow \boxed{Volume=\pi r{}^{2}h}

Where, •L.S.A.=Curved Surface area.

•T.S.A.=Total Surface Area.

━━━━━━━━━━━━━━━━━━━━━━━

\underline{ \huge\mathfrak{hope \: this \: helps \: you}}

Please mark it if it is useful:

Answered by Anonymous
23

\huge\underline\mathrm{Question-}

The volume of a cylindrical rod is 620 cm³, its height is 20 cm, then find its radius.

\huge\underline\mathrm{Answer-}

\large{\boxed{\blue{\rm{Radius\:of\:cylindrical\:rod=3.14\:cm\:(approx)}}}}

\huge\underline\mathrm{Explanation-}

\begin{lgathered}\bold{Given} \begin{cases}\sf{Volume\:of\:cylinderical\:rod=620\:cm^3} \\ \sf{height\:of\:cylindrical\:rod=20\:cm}\end{cases}\end{lgathered}

To find :

  • Radius of cylindrical rod.

Solution :

We know that,

\large{\boxed{\rm{\red{Volume\:of\:cylinder=\pi\:r^2\:h}}}}

Now putting the given values,

\longrightarrow 620 = \dfrac{22}{7} × r² × (20)

\longrightarrow r² = \dfrac{\cancel{620}×7}{22×\cancel{20}}

\longrightarrow r² = \dfrac{31×7}{22}

\longrightarrow r² = \dfrac{217}{22}

\longrightarrow r² = 9.8636

\longrightarrow r = \sqrt{9.8636}

\large{\boxed{\blue{\rm{\therefore\:radius\:of\:cylindrical\:rod=3.14\:cm\:(approx)}}}}

Attachments:
Similar questions