Math, asked by SaraswatiVidya, 4 months ago

the volume of a metallic cylindrical pipe is 748cm³ and its length is 14 cm and its external radius is 9 cm. find its thickness.​

Answers

Answered by chukkalur2004
2

Answer:

1cm.

Step-by-step explanation:

We know that,

volume \: of \: hollow \: cylinder = \pi( {r1}^{2}  -  {r}^{2} )h

where r1 is the outer or external radius.

On substituting the given values, we have,

volume \: of \: hollow \: cylinder =  \frac{22}{7} ( {9}^{2}  -  {r}^{2}) \times 14

44( {9}^{2}  -  {r}^{2} )= 748

81 -  {r}^{2}  = 17

 {r}^{2}  = 81 - 17

 {r}^{2}  = 64

r =  \sqrt{64}

r = 8cm

Thickness = outer radius (r1) - inner radius (r)

Thickness = 9 - 8

Thickness = 1cm.

Therefore, the thickness of the hollow cylinder is 1cm.

Hope it helps you.

Good Luck

Answered by thebrainlykapil
153

\large\underline{ \underline{ \sf \maltese{ \: Question:- }}}

  • The volume of a metallic cylindrical pipe is 748cm³ and its length is 14 cm and its external radius is 9 cm. find its thickness

 \\  \\

\large\underline{ \underline{ \sf \maltese{ \: Given:- }}}

  • External Radius of pipe ( R ) = \sf\green{ 9cm}
  • Height of the pipe ( h ) = \sf\green{ 14cm}
  • Volume of the pipe ( V ) = \sf\green{748 {cm}^{3} }

 \\  \\

━━━━━━━━━━━━━━━━━━━━━━━━━

\large\underline{ \underline{ \sf \maltese{ \: Solution:- }}}

\red{\boxed{ \sf \blue{ Let \: r\: be \: the \: internal \: radius \: in \: centimetres  }}}

\begin{gathered}\begin{gathered}\begin{gathered}: \implies \underline\blue{ \boxed{\displaystyle \sf \bold\orange{\: Volume \: = \: \pi \: ( \:  {R}^{2}  -  {r}^{2}  \: ) \: h  }} }\\ \\\end{gathered}\end{gathered}\end{gathered}

\qquad \quad {:} \longrightarrow \sf{\sf{748 \:  =  \:  \frac{22}{7} ( \:  {9}^{2}  -  {r}^{2}  \: ) \:  \times  \: 14 }}\\ \\

\qquad \quad {:} \longrightarrow \sf{\sf{748 \:  =  \:  \frac{22}{ \cancel{7}} ( \:  {9}^{2}  -  {r}^{2}  \: ) \:  \times  \: \cancel{ 14 }}}\\ \\

\qquad \quad {:} \longrightarrow \sf{\sf{748 \:  =  \:  22 \:  \times  \: 2 \:  ( \:  {9}^{2}  -  {r}^{2}  \: ) }}\\ \\

\qquad \quad {:} \longrightarrow \sf{\sf{748 \:  =  \:  44\:  ( \:  {9}^{2}  -  {r}^{2}  \: ) }}\\ \\

\qquad \quad {:} \longrightarrow \sf{\sf{ \frac{748}{44}  \:  =  \:    81 -  {r}^{2}   }}\\ \\

\qquad \quad {:} \longrightarrow \sf{\sf{\cancel \frac{748}{44}  \:  =  \:    81 -  {r}^{2}   }}\\ \\

\qquad \quad {:} \longrightarrow \sf{\sf{17  \:  =  \:    81 -  {r}^{2}   }}\\ \\

\qquad \quad {:} \longrightarrow \sf{\sf{{r}^{2} \:  =  \:    81 -  17   }}\\ \\

\qquad \quad {:} \longrightarrow \sf{\sf{{r}^{2} \:  =  \:    64 }}\\ \\

\qquad \quad {:} \longrightarrow \sf{\sf{{r}\:  =  \:    \sqrt{64}  }}\\ \\

\qquad\quad {:} \longrightarrow \underline \red{\boxed{\sf{radius\: = \: 8cm    }}}

━━━━━━━━━━━━━━━━━━━━━━━━━

 \quad {:} \longrightarrow \sf\green{\sf{ Thickness \: = \:(\: R \: - \ r\:)  }}\\ \\

 \quad {:} \longrightarrow \sf\green{\sf{ Thickness \: = \: (9 \: - \ 8 ) cm}}\\ \\

\qquad\quad {:} \longrightarrow \underline \red{\boxed{\sf{ \: Thickness\: = \: 1cm  }}}

━━━━━━━━━━━━━━━━━━━━━━━━━

\bf \therefore \; Thickness= 1cm

━━━━━━━━━━━━━━━━━━━━━━━━━

More For Knowledge:-

\boxed{\begin{minipage}{6.2 cm}\bigstar$\:\underline{\textbf{Formulae Related to Cylinder :}}\\\\\sf {\textcircled{\footnotesize\textsf{1}}} \:Area\:of\:Base\:and\:top =\pi r^2 \\\\ \sf {\textcircled{\footnotesize\textsf{2}}} \:\:Curved \: Surface \: Area =2 \pi rh\\\\\sf{\textcircled{\footnotesize\textsf{3}}} \:\:Total \: Surface \: Area = 2 \pi r(h + r)\\ \\{\textcircled{\footnotesize\textsf{4}}} \: \:Volume=\pi r^2h\end{minipage}}

Similar questions