Math, asked by sharmapushya0, 1 year ago

The volume of a right circular cone is 17248 cm cube .If the diameter of the base is 56cm Find its (a) height of the cone (b) slant height (c) curved surface of the cone​

Answers

Answered by isafsafiya
3

Answer:

a ) height of the cone = 21 cm

b ) slant height = 35 cm

c) curved surface of the cone = 3080 cm³

Given:-

  • volume of cone = 17248 cm³
  • diameter = 56 cm
  • as we know raduis is half of diameter
  • radius = 28

To find:-

  • height of the cone
  • slant height
  • curved surface of the cone

as per condition,

first we will find height of the cone

volume \:  \: of \:  \: cone \:  \:  =  \frac{1}{3}  \times \pi \:  \times  {r}^{2}  \times h \\  \\ put \: all \: the \: values \:  \\  \\  \: we \: will \: take \:  \: \pi \:  \:  =  \frac{22}{7}  \\  \\ 17248 =  \frac{1}{3}  \times  \frac{22}{7}  \times 28 \times 28 \times h \\  \\  \frac{17248 \times 3}{22 \times 4 \times 28}  = h \:  \\  \\ divide \: this \: as \: possible \:  \\  \\ h \:  = 21 \\  \\ now \: for \: slint \: height \\  \\  {l}^{2}  =  {h}^{2}  +  {r}^{2}  \\  \\ {l}^{2} =  {21}^{2}  +  {28}^{2}  \\  \\ {l}^{2} = 441 + 748 \\  \\ {l}^{2} = 1225 \\  \\ taking \: squre \: root \: out \\  \\ l = 35 \\  \\ now \: we \: find \: \: curved \: surface \:  area \: of \: cone \\  \\ curved \: surface \:  area \: of \: cone  = \pi \times r \times h \\  \\ curved \: surface \:  area \: of \: cone  =  \frac{22}{7}  \times 28 \times 35 \\  \\ curved \: surface \:  area \: of \: cone  = 88 \times 35 \\  \\ curved \: surface \:  area \: of \: cone 3080 {cm}^{3}

Answered by harendrachoubay
2

(a) height of the cone(h) = 21 cm,

(b) slant height(l) = 35 cm

(c) curved surface of the cone​ =  3080 cm^{2}

Step-by-step explanation:

Given:

The volume of a right circular cone = 17248 cm^3 and

The diameter of base(d) = 56 cm

∴ The radius of cone(r) = 28 cm

To find, (a) height of the cone(h) (b) slant height(l) (c) curved surface of the cone​ = ?

We know that,

The volume of a right circular cone =\dfrac{1}{3} \pi r^{2}h

\dfrac{1}{3} \times\dfrac{22}{7} \times 28\times 28 h=17248

22 \times 4\times 28 h=17248\times 3

h=\dfrac{17248\times 3}{22 \times 4\times 28} =\dfrac{51744}{2464}

⇒ h = 21 cm

∴ Slant height(l) =\sqrt{r^{2}+h^{2}}

=\sqrt{28^{2}+21^{2}}

=\sqrt{784+441} =\sqrt{1225}

= 35 cm

The curved surface of the cone​ =\pi rl

=\dfrac{22}{7}\times 28 \times 35

=22\times 4 \times 35=88 \times 35cm^{2}

= 3080 cm^{2}

Hence, (a) height of the cone(h) = 21 cm,

(b) slant height(l) = 35 cm

(c) curved surface of the cone​ =  3080 cm^{2}

Similar questions