Math, asked by vikramsingh12112002, 9 months ago

The volume of a right circular cone is 4710 cu cm .if the radius and height of the cone are in the ratio 3:4,find it's slant height ,when π3.14

Answers

Answered by Anonymous
60

\Huge{\text{\underline{solution:-}}}

Let the radius and Height be 3a and 4a respectively.

Volume = 4710

\implies{\pi{\r^2{\frac{h}{3}}}} = 4710

\implies 3.14 × (3a)³ × 4a = 4710 × 3

\implies 3.14 × 36 a³ = 14130

\implies a³ =\frac{14130}{36} × 3.14

\implies a³ = 125

\implies \boxed{\tt{a = 5}}

Radius = 5 × 3 = 15 cm

Height = 5 × 4 = 20 cm

Slant Height = \sqrt{( 15^2 + 20^2)}

\implies \sqrt{(225 + 400)}

\implies \sqrt{(625)}

\boxed{\tt{= 25 cm}}

____________________________________________

Answered by Anonymous
74

\huge{\underline{\underline{\mathrm{\red{Answer-}}}}}

\large{\underline{\boxed{\mathrm{\blue{Slant\:height\:of\:cone\:=\:25\:cm}}}}}

\huge{\underline{\underline{\mathrm{\red{Explanation-}}}}}

Given :

  • Volume of right circular cone = 4710 cm³
  • Ratio of Radius and height of cone = 3 : 4

To find :

  • Slant Height of right circular cone

Solution :

Let radius and height of cone be 3x and 4x respectively.

We know that,

\large{\underline{\boxed{\rm{\green{Volume\:of\:cone\:=\:\dfrac{1}{3}\:\pi\:r^2\:h}}}}}

Putting the values,

\implies 4710 = \dfrac{1}{3} × 3.14 × (3x)² × 4x

\implies 36x³ × 3.14 = 4710 × 3

\implies 36x³ = \dfrac{4710\:\times\:3}{3.14}

\implies x³ = 125

\implies x = \sqrt[3]{125}

\rule{200}2

Now, put x = 5 in 3x i.e radius.

\implies Radius of cone = 3x

\implies Radius of cone = 3 × 5

\implies Radius of cone = 15 cm

Now put x = 5 in 4x i.e height.

\implies Height of cone = 4x

\implies Height of cone = 4 × 5

\implies Height of cone = 20 cm

\rule{200}2

We also know that,

Slant Height of cone = \sqrt{ {r}^{2}  +  {h}^{2} }

Putting the values,

\implies Slant height of cone = \sqrt{ {15}^{2}  +  {20}^{2} }

\implies Slant height of cone = \sqrt{ 225 + 400 }

\implies Slant height of cone = \sqrt{625}

\large{\underline{\boxed{\mathrm{\blue{\therefore\:Slant\:height\:of\:cone\:=\:25\:cm}}}}}

Similar questions