Math, asked by ronaksha3897, 3 months ago

The volume of a right circular cone is 9856 cm^3If
the diameter of the base of cone is 28 cm, find
the height of cone
slant height of cone
curved surface area of the cone.​

Answers

Answered by vedant9705
4

Answer:

Here is your answer plz mark me as a brainlest

hope it helps you...

thank you

Attachments:
Answered by Anonymous
6

\huge{\underline{\sf{\orange{Solution-}}}}

{\underline{\sf{\orange{Given-}}}}

\sf{Volume = 9856 {cm}^{3}}

\sf{diameter\:of\:base = 28cm}

\sf{radius = 14 cm}

{\underline{\sf{\orange{Find-}}}}

i) Height of the cone.

ii) Slant Height of the cone.

iii) Curved surface area.

_________________________________

1. Height of the cone = h

Volume of the cone \huge{\underline{\sf{\orange{= \dfrac{1}{3}\pi{r}^{2}h-}}}}

\longrightarrow \sf {\dfrac{ 1}{3} \pi {r}^{2}h = 9856}

\longrightarrow \sf{ \dfrac{ 1}{3}\times \dfrac{22}{7} \times {14}^{2} \times h = 9856}

\longrightarrow \sf {\dfrac{1 }{3} \times \dfrac{22}{7} \times 14 \times 14 \times h = 9856}

\longrightarrow \sf {\dfrac{616}{3}\times h = 9856}

\longrightarrow \sf{h =  \dfrac{9856 \times 3}{616}}

\longrightarrow \sf{h = 16 \times 3}

\longrightarrow \sf\orange{h = 48 cm}

_________________________________

2. Slant height of the cone = ?

\longrightarrow\huge \sf\orange{{l}^{2} = {h}^{2}+ {r}^{2}}

\longrightarrow \sf{{l}^{2} = {48}^{2}+ {14}^{2}}

\longrightarrow \sf{{l}^{2} = 2304+ 196}

\longrightarrow\sf{{l}^{2} = 2500}

\longrightarrow\sf{l = \sqrt{2500}}

\longrightarrow\sf\orange{l = 50cm}

_________________________________

3. Curved surface area of the cone \huge\sf\orange{\pi rl}

\longrightarrow\sf {\dfrac{22}{7}\times 14 \times 50}

\longrightarrow\sf{44 \times 50}

\longrightarrow\sf\orange{= 2200{cm}^{2}}

_________________________________

Similar questions