the volume of a right circular cone is 9856 cm cube if the diameter of the base is 20 cm find the slant height height of the cone curved surface area of the cone.
Answers
Answered by
3
Step-by-step explanation:
it is your answer hope it help you
Attachments:
Answered by
6
The slant height height of the cone curved surface area of the cone is 94.61 cm and 2973.457 cm²
Step-by-step explanation:
Given data
- Volume of cone (V) = 9856 cm³
Diameter of cone (D) = 20 cm
So radius of cone (R) = 10 cm
Height of cone (H) = unknown
Slant height of cone (L) = unknown
- We know the formula of volume of cone
Volume of cone = 9856
- On putting respective value in above equation
On solving, we get
H = 94.08 cm
- We know the relation between slant height ,radius and height of cone
L² = H² + R²
- On putting respective value in above equation
L² = 94.08² + 10²
On solving ,we get
L = 94.61 cm = This is value of slant height of cone
- From formula of curved surface area of cone
Curved surface area of cone (C.S.A) = π×R×L
Curved surface area of cone = 2973.457 cm²
Similar questions
Math,
5 months ago
English,
5 months ago
Math,
5 months ago
Social Sciences,
11 months ago
Math,
11 months ago