Math, asked by xyz176, 1 year ago

The volume of a right circular cone is 9856 cm². If the diameter of the base is 28 cm. Find the

a)height of the cone
b) slant height of the cone
c)curved surface area of the cone

Answers

Answered by shreyasbeliya
21
diameter=28 cm
radius=diameter/2
radius=14 cm
The volume of a right circular cone is 9856 cm²
The volume of a right circular cone=1/3*п*r²h
1/3*22/7*14*14*h= 9856
22*28*h=9856*3
h=29568/22*28
h=29568/616
h=48cm
next, slant height (l)
l=√h²+r²
l=√48²+14²
l=√2304+196
l=√2500
l=50cm
then next, CSA of cone = (пrl)
CSA=22/7*14*50
=15400/7
CSA of cone= 2200 cm²
Answered by GalacticCluster
3

Answer:

Firstly, we will find the height of the cone :

 \\  \sf \: Radius =  \frac{28}{2} \: cm = 14 \: cm  \\  \\

Let the height of the cone be 'h'.

 \\  \sf \: Volume = 9856 \:  \:  {cm}^{3}  \\  \\  \\  \implies \sf \:  \frac{1}{3}   \: \pi {r}^{2} h = 9856 \:  \:  {cm}^{3}  \\  \\  \\  \implies \sf \:  \frac{1}{3}  \times  \frac{22}{7}  \times 14 \times 14 \times h = 9856 \\  \\  \\  \implies \sf \: 48 \:  \:  {cm}^{3}  \\  \\  \\  \implies \sf \blue{h = 48  \:  \: {cm}^{3} } \\

Therefore, the height of the cone is 48 cm³.

__________________________________

 \\  \sf \: Slant \:  \: height \:  \: of \:  \: cone \:  \: (l) =  \sqrt{ {r}^{2}  +  {h}^{2} }  \\  \\  \\  \implies \sf \:  \sqrt{ {14}^{2} +  {48}^{2}  }  \\  \\  \\  \implies \sf \:  \sqrt{196 + 2304}  \:  \: cm \\  \\   \\  \implies \sf \red{50 \:  \: cm} \\

Therefore, the slant height of the cone is 50 cm.

_______________________________________

 \\  \sf \: Csa \:  \: of \:  \: cone = \pi \: rl \\  \\  \\  \implies \sf \:  \frac{22}{7}  \times 14 \times 50 \\  \\  \\  \implies \sf \: 22 \times 100 \\  \\  \\  \implies \sf \green{2200 \:  \:  {cm}^{2} } \\  \\

Therefore, curved surface area of the cone is 2200 cm².

Similar questions