Math, asked by bharatuplawdiya61, 11 months ago

The volume of a right circular cone is 9856 cm3. If the diameter of the base is 28 Cmfindheight of the cone iislant height of the cone curved surface area of the cone​

Answers

Answered by jaykumar1986
2

Answer:

9856 is equals to 28 upon 200 into height .

9856 X 200 upon 28 is equals to height.

1464×200/7

Answered by PsychoUnicorn
58

\huge{\underline{\sf{\orange{Solution-}}}}

{\underline{\sf{\orange{Given-}}}}

  • \sf{Volume = 9856 {cm}^{3}}

  • \sf{diameter\:of\:base = 28cm}

  • \sf{radius = 14 cm}

{\underline{\sf{\orange{Find-}}}}

i) Height of the cone.

ii) Slant Height of the cone.

iii) Curved surface area.

_________________________________

1. Height of the cone = h

Volume of the cone \huge{\underline{\sf{\orange{= \dfrac{1}{3}\pi{r}^{2}h-}}}}

\longrightarrow \sf {\dfrac{ 1}{3} \pi {r}^{2}h = 9856}

\longrightarrow \sf{ \dfrac{ 1}{3}\times \dfrac{22}{7} \times {14}^{2} \times h = 9856}

\longrightarrow \sf {\dfrac{1 }{3} \times \dfrac{22}{7} \times 14 \times 14 \times h = 9856}

\longrightarrow \sf {\dfrac{616}{3}\times h = 9856}

\longrightarrow \sf{h =  \dfrac{9856 \times 3}{616}}

\longrightarrow \sf{h = 16 \times 3}

\longrightarrow \sf\orange{h = 48 cm}

_________________________________

2. Slant height of the cone = ?

\longrightarrow\huge \sf\orange{{l}^{2} = {h}^{2}+ {r}^{2}}

\longrightarrow \sf{{l}^{2} = {48}^{2}+ {14}^{2}}

\longrightarrow \sf{{l}^{2} = 2304+ 196}

\longrightarrow\sf{{l}^{2} = 2500}

\longrightarrow\sf{l = \sqrt{2500}}

\longrightarrow\sf\orange{l = 50cm}

_________________________________

3. Curved surface area of the cone \huge\sf\orange{\pi rl}

\longrightarrow\sf {\dfrac{22}{7}\times 14 \times 50}

\longrightarrow\sf{44 \times 50}

\longrightarrow\sf\orange{= 2200{cm}^{2}}

_________________________________

Similar questions