Math, asked by anjalitreading06, 6 months ago

② The volume of a right circular cone is 9856 cm3

.If the diameter of the base is 28cm ,find:

(i) height of the cone (ii) slant height of the cone (iii) curved surface area of the cone​

Answers

Answered by kartik2507
10

Answer:

height = 48 cm

slant height = 50 cm

csa = 2200cm²

Step-by-step explanation:

volume of cone = 1/3 π r² h = 9856 cm³

r = d/2 = 28/2 = 14

π = 22/7

 \frac{1}{3}  \times  \frac{22}{7}  \times  {(14)}^{2}  \times h = 9856 \\  \frac{22 \times 14 \times 14 \times h}{3 \times 7}  = 9856 \\ h =  \frac{9856 \times 3 \times 7}{22 \times 14 \times 14}  \\ h =  \frac{448 \times 3}{2 \times 14}  \\ h =  \frac{32 \times 3}{2}  \\ h = 16 \times 3 \\ h = 48

height of cone = 48cm

slant height of cone = l

l² = r² + h²

 {l}^{2}  =  {r}^{2}  +  {h}^{2}  \\  {l}^{2}  =  {(14)}^{2}  +  {(48)}^{2}  \\  {l}^{2}  = 196 + 2304 \\  {l}^{2}  = 2500 \\ l =  \sqrt{2500}  \\ l = 50

slant height of cone = 50cm

CSA of cone = π r l

csa \: of \: cone \:  = \pi \: r \: l \\  =  \frac{22}{7}  \times 14 \times 50 \\  = 22 \times 2 \times 50 \\  = 44 \times 50 \\  = 2200 {cm}^{2}  \\

CSA of cone = 2200cm²

hope you get your answer

Similar questions
Math, 6 months ago