Math, asked by AmnaZaara06, 3 months ago

The volume of a right circular cone is 9856 cm3

. If the diameter of the base is 28 cm, then

find the slant height of the cone.​

Answers

Answered by Anonymous
11

☁Answer:-

Given

volume = 9856m²

Diameter = 28cm

Radius = 28/2 = 14cm.

i.) slant height of cone

l = √[h² + r²]

l = √[(48)² + 14²]

l = √2304 + 196

l = √2500

l = 50 cm.

Therefore , slant height= 50cm

#Hopeithelps

Answered by XxxRAJxxX
5

Answer:

Given :-

  • Volume of cone = 9856 cm^3
  • Diameter = 28 cm
  • Radius = d/2 = 28/2 = 14 cm

Volume of a cone =  \frac{1}{3} \pi r^2 h

Therefore,

 \therefore 9856 cm^3 = \frac{1}{3} \times \frac{22}{7} \times (14)^2 \times h

 \implies 9856 cm^3 = \frac{1}{3} \times \frac{22}{\cancel{7}} \times \cancel{14} \times 14 \times h

 \implies 9856 cm^3 = \frac{22  \times 2 \times 14 \times h}{3}

 \implies 9856 cm^3 = \frac{44 \times 14 \times h}{3}

 \implies 9856 cm^3 \times 3 = 44 \times 14 \times h

 \implies h = \frac{9856 \times 3}{44 \times 14}

 \implies h = \frac{\cancel{9856} \times 3}{44 \times \cancel{14}}

 \implies h = \frac{704 \times 3}{44}

 \implies h = \frac{\cancel{704} \times 3}{\cancel{44}}

 \implies h = 14 \times 3

\implies \bf h = 48 cm

Now,

  • h = 48 cm
  • r = 14 cm

 \because l^2 = h^2 + r^2

 \therefore l^2 = 48^2 + 14^2

 \implies l^2 = 2304 + 196

 \implies l = \sqrt{2500}

 \implies \bf l = 50 cm

Hence, the slant height of the cone is 50 cm.

Similar questions