Math, asked by ksatyanarayana9850, 1 year ago

The volume of a right circular cone is 9856cm^3, of the diameter of the base is 28cm.Find height, slant height, csan

Answers

Answered by answerqueen
10

\bold{given : } \\  \\ volume \: of \:  a \: cone :  \\  \\ 9856 \:  {cm}^{2}  \\  \\  \\  \\ \bold{diameter : } \\  \\ 28 \: cm \:  \\  \\ radius :  \\  \\  \frac{diameter}{2}  \: cm \:  \\  \\  \frac{28}{2} \:  cm \:  \\  \\ \bold{radius \:  =  \: 14 \: cm \: } \\  \\  \\  \\ \bold{volume \: of \: a \: cone : } \\  \\ \bold{ \frac{1}{3}  \times \pi \times  {r}^{2}  \times h }\\  \\ 9856 \:  =  \frac{1}{3}  \times  \frac{22}{7}  \times 14 \times 14 \times h \\  \\ h =   \frac{9856 \times 3 \times 7}{22 \times 14 \times 14}  \\  \\ h =  \frac{448 \times 3}{2 \times 14}  \\  \\ \bold{height \:  =  \: 48 \: cm \: } \\  \\  \\  \\\bold{slant \: height : ( \: l \: )} \\  \\  \sqrt{ {r}^{2}  +  {h}^{2} }  \\  \\  \sqrt{ {14}^{2} +  {48}^{2}  }  \\  \\  \sqrt{196 + 2304}  \\  \\  \sqrt{2500}  \\  \\ 50 \: cm \:  \\  \\ \bold{slant \: height \:  =  \: 50 \: cm \: } \:  \\  \\  \\  \\ \bold{curved \: surface \: area  \: of \: cone \: : } \\  \\ \pi \times r \times l \\  \\  \frac{22}{7}  \times 14 \times 50 \\  \\ 22 \times 2 \times 50 \\  \\ 44 \times 50 \\  \\ 220 \:  {cm}^{2}  \\  \\ \bold{c.s.a. \: of \: cone \:  =  \: 220 \:  {m}^{2} }
Answered by Anonymous
0

Step-by-step explanation:

Given :-

The volume of the right circular cone

= 9856cm^3

Diameter =28 cm

Radius = Diameter/2

Radius of the cone = 14cm

Solution 1 :-

Volume of the cone = 1/3πr^2h

Put the required values in the formula ,

9856 = 1/3 * 22/7 * 14 * 14 * h

h = 9856 * 3 * 7 / 22 * 14 * 14

h = 206976 / 4312

h = 48

Hence , The height of the cone is 48cm

Solution 2 :-

Radius of the cone = 14 cm

Height of the cone = 48cm

Now ,

( l )^2 = (radius)^2 + ( height )^2

Slant height ( l )^2 = √( 14)^2 + ( 48)^2

( l )^2 = 196 + 2304

( l )^2 = 2500

l = 50 cm

Thus , The slant height of a cone is 50 cm

Solution 3 :-

Total surface area of cone

Put the required values in the formula ,

TSA of cone = 22/7 * 14 ( 50 + 14)

TSA of cone = 22 * 2 * 64

TSA of cone = 2816 cm²

Similar questions