Math, asked by amd2006, 4 months ago

The volume of a right circular cone is 9856cm2. If diameter of the base is 28cm. Find a) Height of the cone. b) Slant height.
c)Curved surface area. d)Total surface area

Answers

Answered by gamericon18
0
Height of its length and breadth degrees Celsius 5 degrees Celsius
Answered by shilpapanchal126
1

Answer:

Given−

\blue{\texttt{volume \: of \: a \: right \: circular \: cone \: is }}volume of a right circular cone is 9856 {cm}^{2} 9856cm

2

\blue{\texttt{diameter \: of \: the \: base \: is }}diameter of the base is 28cm .

so \: \: r = \large\frac{28}{2} sor=

2

28

= 14 cm

\underline\blue{\bold{To \: Find }}

ToFind

:-

a) Height of the cone.

b) Slant height.

c)Curved surface area

d)Total surface area.

\red{\textbf{(i)height}}(i)height = \underline\blue{\bold{h}}

h

\red{\textbf{volume}}volume =

9856 = \large \frac{1}{3} \pi {r}^{2} h9856=

3

1

πr

2

h

9856 = \frac{1}{3} \times \frac{22}{7} \times 14 \times 14 \times h9856=

3

1

×

7

22

×14×14×h

h = 48 \: cmh=48cm

\red{\textbf{(ii) \: slant \: height}}(ii) slant height =

{l}^{2} = \sqrt{ {r}^{2} + {h}^{2} } l

2

=

r

2

+h

2

{l}^{2} = \sqrt{ {14}^{2} + {48}^{2} } = \sqrt{196 + 2304} l

2

=

14

2

+48

2

=

196+2304

{l }^{2} = 2500l

2

=2500

l = \sqrt{2500} l=

2500

l = \sqrt{(5 {0)}^{2} } l=

(50)

2

l \: = 50 \: cml=50cm

\red{\textbf{(iii) \: curved \: surface \: Area}}(iii) curved surface Area =>

we know that r = 14 cm and l = 50cm

(\pi \: rl \: = \large \frac{22}{7} \times 14 \times 50) {cm}^{2} (πrl=

7

22

×14×50)cm

2

= (22 \: \times 2 \times 50)c {m}^{2} =(22×2×50)cm

2

= 2200 \: c {m}^{2} =2200cm

2

\red{\textbf{(iv) \: total \: surface \: area}}(iv) total surface area = πr(l + r)

= 22/7 × 14(50 + 14)

= 22 × 2(64)

= 22 × 2 × 64

= 8192 \: c {m}^{2} =8192cm

2

•\blue{\texttt{height \: of \: cone}}height of cone 14cm

•\blue{\texttt{slant \: height \:}}slant height 50 {cm}^{2} 50cm

2

•\blue{\texttt{curved \: surface \: area}}curved surface area 2200 {cm}^{2} 2200cm

2

•\blue{\texttt{total \: surface \: area}}total surface area 8192 \: c {m}^{2} 8192cm

2

this answer for your first question

Similar questions