Math, asked by Anonymous, 9 months ago

the volume of a right circular cone is 9856cm2.if radius of the base is 14cm,find the height of the cone.​

Answers

Answered by Anonymous
144

\bf{\underline{\underline \green{Solution:-}}}

\frak\red{AnswEr}\begin{cases}\sf\blue{\underline{The \: height \: of \: the \: cone = 48cm}}\end{cases}

\frak\red{Given}\begin{cases}\sf\red{\underline{Volume \: of \: right \:circular \: cone = 9856 cm^3}} \\ \sf\blue{\underline{Radius \: of \: the \: base = 14 cm}}\end{cases}

\frak\red{Need\:To\:Find}\begin{cases}\sf\pink{\underline{The \: height \: of \: the \: cone = \:?}}\end{cases}

\bf{\underline{\underline \green{ExPlanation:-}}}

\underline\mathtt \orange{Formula\:used\:here:-}

\bigstar\:\large{\boxed{\sf\pink{Volume \: of \: circular\: cone = \dfrac{1}{3}\pi r^2 h }}}

\underline\mathtt \orange{Now, Putting\:the\: values:-}

\longrightarrow \sf \green {9856 = \dfrac{1}{3}\times 3.14 \times (14)^2 \times Height} \\\\

\longrightarrow\sf \pink {9856 = \dfrac{1}{3}\times 3.14 \times 196 \times Height} \\\\

 \longrightarrow\sf \red {9856 = \dfrac{615.44 \times Height}{3}} \\\\ \longrightarrow\sf \green {9856 = 205.147 \times Height} \\\\ \longrightarrow\sf\pink{ Height = \dfrac{\cancel{9856}}{\cancel{205.147}} } \\\\

\longrightarrow\sf \blue {Height = 48\:Cm} \\\\

\underline\mathtt \orange{ThereFore:}

  • \small\orange{\underline {\boxed{\sf\green{ The \: height \: of \: the \: cone = 48cm} }}}

\setlength{\unitlength}{1.0 cm}}\begin{picture}(12,4)\thicklines\put(1,1){\line(1,0){6.5}}\put(1,1.1){\line(1,0){6.5}}\end{picture}

Answered by MяƖиνιѕιвʟє
166

ɢɪᴠᴇɴ :-

  • Volume = 9856 cm³
  • Radius (r) = 14 cm

ᴛᴏ ғɪɴᴅ :-

  • Height (h)

sᴏʟᴜᴛɪᴏɴ :-

We know that,

 \implies \sf \: Volume \: of \: Cone =  \frac{1}{3}  \times \pi \times  {r}^{2}  \times h

Put the above given values in it, we get,

 \implies \sf \: 9856 =  \frac{1}{3}  \times  \frac{22}{7}  \times  {(14)}^{2}  \times h \\  \\  \\  \implies \sf \: 9856 =  \frac{1}{3}  \times  \frac{22}{7}  \times 196 \times h \\  \\  \\  \implies \sf \: 9856 \times 3 =  \frac{22 \times 196}{7}   \times h\\  \\  \\  \implies \sf \: 29568 = 22 \times 28 \times h \\  \\  \\  \implies \sf \: h =  \cancel\frac{29568}{616}  \\  \\  \\  \implies \sf \: h = 48m

Hence,

  • Height (h) of cone = 48m
Similar questions