Math, asked by himabindupitta4, 10 months ago

The volume of a right circular cone of height 14cm is 168 cm3

. The radius of the cone is​

Answers

Answered by Skyllen
18

Given

  • Volume of cone = 168 cm³
  • Height of cone(h) = 14cm

 \\

To Find

  • Radius of cone(r) = ?

 \\

Using Formula

 \tt Volume \: of \: right \: circular \: cone  =  \frac{\pi \: r {}^{2} h}{3}

 \\

Solution

 \tt \implies Volume \: of \: cone =  \frac{\pi \: r {}^{2}h }{3}  \\   \tt \implies \: 168cm {}^{3} = \:  \frac{\pi \times r {}^{2}  \times 14}{3} cm {}^{3}  \\ \tt \implies \: 168cm {}^{3}  \times 3 = \: \frac{22}{7}  \times 14 \times r {}^{2}   \\  \tt \implies 504cm {}^{3}  = \frac{308}{7} r {}^{2}  \\  \tt \implies 504 \times 7 = 308r {}^{2}  \\  \tt \implies \: 3528cm {}^{3} = \:  308r{}^{2}  \\  \tt \implies r{}^{2} = \frac{3528}{308}  \\  \tt \implies \: r{}^{2} = \:  \frac{882}{77}  \\  \tt \implies \: r = \: \sqrt{11.45}  \\  \tt \implies r = 3.39cm \\

Hence, radius of cone is 3.39cm.

Answered by Anonymous
11

Given ,

  • The volume of right circular cone = 168 cm³
  • Height of right circular cone = 14 cm

We know that , the volume of right circular cone is given by

 \sf \star \:  \:  \fbox{Volume =  \frac{\pi {(r)}^{2}h }{2} }

Thus ,

\Rightarrow \sf 168 =  \frac{22 \times  {(r)}^{2}  \times \cancel{14}}{ \cancel{7} \times 3} \\  \\\Rightarrow \sf 504 = 44 \times  {(r)}^{2}   \\  \\ \Rightarrow \sf {(r)}^{2}  =  \frac{504}{44} \\  \\  \Rightarrow \sf {(r)}^{2} = 11.45\\  \\\Rightarrow \sf r =   \sqrt{11.45}  \\  \\\Rightarrow \sf r = 3.39 \:  \: cm

 \therefore \sf \bold{ \underline{The \:  radius \:  is  \: 3.39 \:  cm}}

Similar questions