Math, asked by sujajoy, 9 months ago

the volume of a right circular cylinder is 1100 cm^3 and radius is 5 CM. find its TSA​

Answers

Answered by Anonymous
10

To Find :

  • we need to find the Total surface area of cylinder.

Given :

  • Volume of cylinder = 1100cm³
  • Radius of cylinder = 5cm

we know that,

  • Volume of Cylinder = πr²h

⇛π × 5² × h = 1100

⇛25πh = 1100

⇛πh = 1100/25

⇛πh = 44

⇛h = 44/π

  • TSA of cylinder = 2πr(r + h)

⟹ 2π × 5(5 + 44/π)

⟹ 10π( 5 + 44/π)

⟹ 50π + 440

⟹ 50 × 22/7 + 440

⟹ 1100/7 + 440

⟹ (1100 + 3080)/7

⟹ 4180/7

⟹ 597.14cm²

hence,

  • TSA of cylinder = 597.14cm²
Answered by Anonymous
1

\rm\huge\blue{\underline{\underline{ Question : }}}

The volume of a right circular cylinder is 1100 cm³ and radius is 5 CM. Find its TSA.

\rm\huge\blue{\underline{\underline{ Solution : }}}

Given that,

  • Volume of Cylinder = 1100 cm³
  • Radius of Cylinder = 5 cm.

To find,

  • Total Surface area of Cylinder.

Let,

Volume of Cylinder = πr²h = 1100

\sf\:\implies \frac{22}{7} \times 5 \times 5 \times h = 1100

\sf\:\implies h = 1100 \times \frac{1}{5} \times \frac{1}{5} \times \frac{22}{7}

\sf\:\implies h = 2 \times 7

\sf\:\implies h = 14

\boxed{\bf{\purple{ \therefore Height(h) = 14 cm}}}

Now,

  • \tt\green{ Total\:Surface\:area\:_{( Cylinder)} = 2\pi r(r + h) }

\sf\:\implies 2 \times \frac{22}{7} \times 5 (5 + 14)

\sf\:\implies 2 \times \frac{22}{7} \times 5 (19)

\sf\:\implies \frac{4180}{7}

\sf\:\implies 597.14

\underline{\boxed{\bf{\purple{ \therefore Total\:surface\:area\:_{( Cylinder)} = 597.14cm^{3}}}}}\:\orange{\bigstar}

Similar questions