Math, asked by anjalikhune18, 1 month ago

the volume of a right circular cylinder is 38016cm3.if the height of the cylinder is 21cm, find it curves surface area?​

Answers

Answered by ShírIey
122

Given: The Volume of a right Circular Cylinder is 38016 cm³. & The height of the given right Circular Cylinder is 21 cm.

Need to find: CSA (Curved Surface Area) of Cylinder?

⠀⠀━━━━━━━━━━━━━━━━━━━━━━━━━━━━━⠀

¤ To Calculate the CSA of Cylinder we'll require the radius of Cylinder. So, Let's find out the radius of Cylinder —

» Formula to find Volume of Cylinder is Given by :

\quad\star\;\underline{\boxed{\pmb{\frak{ \sf{V}olume_{\:(Cylinder)} =  \pi r^2 h}}}}\\\\

⠀⠀⠀\underline{\bf{\dag} \:\mathfrak{Substituting\;values\;in\; formula\: :}}\\\\⠀⠀⠀⠀

:\implies\sf 38016 = \dfrac{22}{\cancel{ \: 7}} \times  r^2  \times \cancel{21}\\\\\\:\implies\sf 38016 = 22 \times r^2 \times 3\\\\\\:\implies\sf 38016 = 66 \times r^2\\\\\\:\implies\sf r^2 = \cancel\dfrac{38016}{66}\\\\\\:\implies\sf r^2 = 576\\\\\\:\implies\sf r = \sqrt{576}\\\\\\:\implies\underline{\boxed{\pmb{\frak{r = 24}}}}\;\bigstar\\\\

\:\;\therefore{\underline{\sf{Radius\;(r)\:of\:cylinder\:is\:{\sf{\pmb{24\:cm}}}.}}}\\

⠀⠀━━━━━━━━━━━━━━━━━━━━━━━━━━━━━⠀

✇ Now, By using radius (r) of Cylinder we'll find out the CSA of Cylinder. Formula of CSA (Curved Surface Area) of Cylinder is Given by —

\quad\star\;\underline{\boxed{\pmb{\sf{Curved\; Surface\;Area_{\:(Cylinder)} = 2 \pi r h }}}}\\\\

⠀⠀⠀\underline{\bf{\dag} \:\mathfrak{Substituting\;values\;in\; formula\: :}}\\\\⠀⠀⠀⠀

:\implies\sf CSA = 2 \times \dfrac{22}{7} \times 24 \times 21\\\\\\:\implies\sf CSA = 2 \times \dfrac{22}{ \cancel{\;7}} \times 24 \times \cancel{21}\\\\\\:\implies\sf CSA = 2 \times 22 \times 24 \times 3\\\\\\:\implies\sf CSA = 44 \times 72\\ \\ \\:\implies\underline{\boxed{\pmb{\frak{CSA_{\:(Cylinder)} = 3168\;cm^2}}}}\;\bigstar\\\\

\:\;\therefore{\underline{\sf{Curved\;Surface\;Area\:\:of\:cylinder\:is\:{\sf{\pmb{3168\:cm^2}}}.}}}

Attachments:
Answered by MяMαgıcıαη
97

Answer :

\:

  • Curved surface area of a right circular cylinder is 3168 cm².

\:

⠀⠀⠀━━━━━━━━━━━━━━━━━━━━━━

\:

Explanation :

\:

Given :

\:

  • Volume of a right circular cylinder is 38016cm³.

  • Height of a right circular cylinder is 21 cm.

\:

To Find :

\:

  • Curved surface area of a right circular cylinder?

\:

Solution :

\:

Understanding the Question :

\:

❏ Here, we have volume and height (h) of a right circular cylinder and we have to find out it's curved surface area (C.S.A).

\:

❏ Firstly we will calculate it's radius by using formula of volume of cylinder i.e, Volume of cylinder = πr²h.

\:

❏ Then, by putting all values in formula of Curved surface area of cylinder i.e, Curved surface area of cylinder = 2πrh we will get our required answer.

\:

⚝ Finding radius (r) of cylinder :

\:

➥ Volume (cylinder) = πr²h

\:

➥ 38016 = 22/7 × r² × 21

\:

After cancelling 21 with 7 in right hand side, we get :

\:

➥ 38016 = 22 × 3 × r²

\:

➥ 38016 = 66 × r²

\:

➥ r² = 38016/66

\:

➥ r² = 576

\:

➥ r = √576

\:

➥ r = √(24 × 24)

\:

r = 24

\:

  • Therefore, radius of a right circular cylinder is 24 cm.

\:

⚝ Finding curved surface area (C.S.A) of cylinder :

\:

➥ C.S.A (cylinder) = 2πrh

\:

➥ C.S.A (cylinder) = 2 × 22/7 × 24 × 21

\:

After cancelling 21 with 7 in right hand side, we get :

\:

➥ C.S.A (cylinder) = 2 × 22 × 24 × 3

\:

➥ C.S.A (cylinder) = 44 × 72

\:

C.S.A (cylinder) = 3168

\:

❏ This is the required answer! \red{\clubsuit}

\:

  • Therefore, curved surface area of a right circular cylinder is 3168 cm².

\:

Explore more :

\:

Formulas of volume and area of different shapes :

\:

\begin{array}{|c|c|c|}\cline{1-3}\bf Shape&\bf Volume\ formula&\bf Surface\ area\ formula\\\cline{1-3}\sf Cube&\tt l^3}&\tt 6l^2\\\cline{1-3}\sf Cuboid&\tt lbh&\tt 2(lb+bh+lh)\\\cline{1-3}\sf Cylinder&\tt {\pi}r^2h&\tt 2\pi{r}(r+h)\\\cline{1-3}\sf Hollow\ cylinder&\tt \pi{h}(R^2-r^2)&\tt 2\pi{rh}+2\pi{Rh}+2\pi(R^2-r^2)\\\cline{1-3}\sf Cone&\tt 1/3\ \pi{r^2}h&\tt \pi{r}(r+s)\\\cline{1-3}\sf Sphere&\tt 4/3\ \pi{r}^3&\tt 4\pi{r}^2\\\cline{1-3}\sf Hemisphere&\tt 2/3\ \pi{r^3}&\tt 3\pi{r}^2\\\cline{1-3}\end{array}

\:

━━━━━━━━━━━━━━━━━━━━━━━━

Similar questions