Math, asked by vk150193, 4 months ago

the volume of a right circular cylinder is 448πcm^2 and height is 7cm.find the lateral surface area and total surface area​

Answers

Answered by NewGeneEinstein
5

Answer:

Given:-

The volume of a cylinder =448\pi cm^3

Height=h=7cm

To find:-

Lateral surface area=Lsa

Total surface area =Tsa

Solution:-

Let radius =r

We know that in a Cylinder

\boxed{\sf Volume=\pi r^2 h}

\qquad\quad\displaystyle\sf {:}\longrightarrow \pi r^2(7)=448\pi

\qquad\quad\displaystyle\sf {:}\longrightarrow 7r^2=448

\qquad\quad\displaystyle\sf {:}\longrightarrow r^2=\dfrac {448}{7}

\qquad\quad\displaystyle\sf {:}\longrightarrow r^2=64

\qquad\quad\displaystyle\sf {:}\longrightarrow r=\sqrt {64}

\qquad\quad\displaystyle\sf {:}\longrightarrow r=8cm

  • Radius =8cm

\boxed{\sf LSA=2\pi rh}

\qquad\quad\displaystyle\sf {:}\longrightarrow LSA=2\dfrac {22}{7}×8×7

\qquad\quad\displaystyle\sf {:}\longrightarrow LSA=\dfrac {44}{56}{7}

\qquad\quad\displaystyle\sf {:}\longrightarrow LSA=44×8

\qquad\quad\displaystyle\sf {:}\longrightarrow LSA=352cm^2

\boxed{\sf TSA=2\pi r (h+r)}

\qquad\quad\displaystyle\sf {:}\longrightarrow TSA=2×\dfrac {22}{7}×8 (8+7)

\qquad\quad\displaystyle\sf {:}\longrightarrow TSA=\dfrac {44×8}{7}(15)

\qquad\quad\displaystyle\sf {:}\longrightarrow TSA=\dfrac {352×15}{7}

\qquad\quad\displaystyle\sf {:}\longrightarrow TSA=\dfrac {5280}{7}

\qquad\quad\displaystyle\sf {:}\longrightarrow TSA=754.2 cm^2

Answered by Anonymous
3

\huge\tt\underline{⛇Answer⛇}

Attachments:
Similar questions