Math, asked by BrainlyHelper, 1 year ago

The volume of a solid hemisphere is 718 ⅔ cm³. Find its total surface area. [use π =22/ 7]

Answers

Answered by nikitasingh79
3
Given:

Volume of a solid hemisphere = 718 ⅔ cm³ = 2156/3


2/3πr³= 2156/3


2 (22/7) × r³ = 2156


44 r³ = 2156×7


r³= (2156×7)/44


r³= (196 ×7 ) / 4 = 49 ×7=


r = ³√ 7×7× 7


r= 7


Total surface area of hemisphere = 3πr²


Total surface area of hemisphere =3× (22/7) × 7²

= 3× (22/7) × 7× 7= 3×22× 7= 21× 22= 462 cm²




Total surface area of hemisphere =462 cm²


==================================================================================

Hope this will help you.....
Answered by Anonymous
0
Hi friend,

Your answer:

Volume of a solid hemisphere = 718 ⅔ cm³

=> 2/3πr³= 2156/3

=> 2 (22/7) × r³ = 2156

=> 44 r³ = 2156×7

r³= (2156×7)/44

r³= (196 ×7 ) / 4

r³ = 49 ×7 

r = ³√ (7×7× 7)

r= 7


Now,
Total surface area of hemisphere = 3πr²

                                                    =3× (22/7) × 7²

                                                    = 3× (22/7) × 7× 7
                                       
                                                   = 3×22× 7
                         
                                                   = 21× 22

                                                   = 462 cm²

Hence, the total surface area of the hemisphere =462 cm²
Similar questions