Math, asked by sanayakhan3095, 10 months ago

The volume of a solid right circular cone is 11088 cm3.if it's height is 24 cm then find the radius of cone

Answers

Answered by BrainlyConqueror0901
22

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{Radius \: of \: cone = 21 \: cm}}}

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{\underline \bold{Given :}} \\  \tt:  \implies Volume \: of \: cone = 11088 \:  {cm}^{3}  \\  \\ \tt:  \implies Height \: of \: cone = 24 \: cm \\  \\ \red{\underline \bold{To \: Find :}} \\  \tt:  \implies Radius \: of \: cone =?

• According to given question :

 \bold{As \: we \: know \: that} \\  \tt:  \implies Volume \: of \: cone =  \frac{1}{3} \pi {r}^{2} h \\  \\ \tt:  \implies 11088 = \frac{1}{3}  \times  \frac{22}{7}  \times  {r}^{2}  \times 24 \\  \\ \tt:  \implies 11088 \times 3 =  \frac{22}{7}  \times 24 \times  {r}^{2}  \\  \\ \tt:  \implies  \frac{11088 \times 3 \times 7}{22 \times 24}  =  {r}^{2}  \\  \\ \tt:  \implies 441 =  {r}^{2}  \\  \\ \tt:  \implies r =  \sqrt{441}  \\  \\  \green{\tt:  \implies r = 21 \: cm} \\  \\   \green{\tt \therefore Radius \: of \: cone \: is \: 21 \: cm}

Answered by Anonymous
8

\huge\purple{\underline{\underline{\pink{Ans}\red{wer:-}}}}

\sf{Length \ of \ radius \ is \ 21 \ cm}

\sf\orange{Given:}

\sf{\implies{Volume \ of \ cone=11088 \ cm^{3}}}

\sf{\implies{Height(h)=24 \ cm}}

\sf\pink{To \ find:}

\sf{Radius(r) \ of \ the \ cone.}

\sf\green{\underline{\underline{Solution:}}}

\sf{Volume \ of \ cone=\frac{1}{3}\times \ \pi\times \ r^{2}\times \ h}

\sf{\implies{11088=\frac{1}{3}\times\frac{22}{7}\times \ r^{2}\times24}}

\sf{\implies{r^{2}=\frac{11088\times3\times7}{22\times24}}}

\sf{\implies{r^{2}=441}}

\sf{On \ taking \ square \ root \ of \ both \ sides}

\sf{r=21 \ cm}

\sf\purple{\tt{\therefore{Length \ of \ radius \ is \ 21 \ cm}}}

Similar questions