Math, asked by 939894113r, 1 year ago

The volume of metallic hallow sphere is
constant. If the outer radius is increasing at
the rate of V cm/sec. Then the rate at which
the inner radius increasing when the radii are
a +d, a is
1a
V(a+d), V(a+d) 3) V(a+d) 4) a+d​

Answers

Answered by anu24239
4

\huge\mathfrak\red{Answer}

THIS QUESTION ACTUALLY CHECK YOUR DIFFERENTIABLITY TALENT.

volume \: of \: hollow \: sphere  \\   \frac{4}{3} \pi ({m}^{3}  -  {n}^{3} ) \\ where \: m \: is \: outer \: radii \: and \: n \: is  \\ \: inner \: radii \\  \\ v =  \frac{4}{3} \pi( {m}^{3}  -  {n}^{3} ) \\ differentiate \: the \: equation \: with \\ respect \: to \: time \\  \\  \frac{d(v)}{dt}  =  \frac{4}{3} \pi( \frac{d( {m}^{3}) }{dt}  -  \frac{d( {n}^{3}) }{dt} ) \\ as \: we \: know \:  \frac{dv}{dt}  = 0 \: because \: volume \: \\  is \: constant \\  \\ 0 =  \frac{4}{3} \pi(3 {m}^{2}  \frac{dm}{dt}  - 3 {n}^{2}  \frac{dn}{dt} ) \\  \\  \frac{dm}{dt}  = v \\ m = a + d \\ n = a \\  \\ 0 = 3{(a + d)}^{2}  \times v - 3{(a)}^{2}  \frac{dn}{dt}  \\ 3 {a}^{2}  \frac{dn}{dt}  = 3 {(a + d)}^{2} </strong><strong>v</strong><strong> \\  \frac{dn}{dt}  =  \frac{ {(a + d)}^{2}</strong><strong>v</strong><strong> }{ {a}^{2} }  \\  \frac{dn}{dt}  =  ({ 1 + \frac{d}{a} })^{2} </strong><strong>v</strong><strong>

Similar questions