Physics, asked by deepikabose40, 8 months ago


The volume of nucleus is smaller than that of the
atom by a factor of about
(a) 10
(b) 10 5 Heid
(c) 10 10
(d)10 15​

Answers

Answered by SuraBhaavya
2

Explanation:

Experiments on scattering of a-particles demonstrated that the radius of a nucleus was smaller than the radius of an atom by a factor of about 104. This means the volume of a nucleus is about 10–12 times the volume of the atom. In other words, an atom is almost empty.

Volume fraction = Volumeofnucleus / Totalvol.ofatom

= (4/3)π(10 ^−13 ) ^3 / (4/3)π(10 ^−8 )^3

=10^5

So, the corret answer is 10^5

So, the corret answer is 10^5

Answered by syed2020ashaels
0
  • As per the data given in the above question.
  • To find the volume of an atom to the volume of the nucleus.

Let us consider

The \:  radius \:  of  \: the  \: atom (r_1) = {10}^{ - 10}

The \:  radius\: of \: the \: nucleus(r_2)={10}^{ - 15}

Let us take the volume of the atom to the volume of the nucleus, then we get

volume \:  of  \: sphere  \: is  \frac{4}{3} \pi {r}^{3}

so,

 \frac{volume  \: of  \: atom }{volume \:  of \:  nucleus}  =  \frac{ \frac{4}{3} \pi \: r_1 }{ \frac{4}{3} \pi \: r_2}

 \frac{volume  \: of  \: atom }{volume \:  of \:  nucleus}  =   \frac{ {({10}^{ - 10}) }^{3}  }{ ( {{10}^{ - 15} )}^{3} }

 \frac{volume  \: of  \: atom }{volume \:  of \:  nucleus}  =   \frac{ {10}^{ - 30} }{ {10}^{ - 45} }

shift the power because the base is same,

 \frac{volume  \: of  \: atom }{volume \:  of \:  nucleus}  =   {10}^{( - 30 + 45)}

\frac{volume  \: of  \: atom }{volume \:  of \:  nucleus}  =   {10}^{15}

Hence,

The ratio of the volume of an atom to the volume of the nucleus is 10¹⁵.

Project code#SPJ2

Similar questions