Math, asked by Akshara2827, 6 months ago

The volume of right circular cone is 2200/7 cm^3 and its height 12 cm. Find its slant height.​

Answers

Answered by sethrollins13
82

Given :

  • Volume of Cone is 2200/7 cm³ .
  • Height of Cone is 12 cm .

To Find :

  • Slant Height of Cone .

Solution :

Firstly we will find Radius :

\longmapsto\tt{Height=12\:cm}

Using Formula :

\longmapsto\tt\boxed{Volume\:of\:Cylinder=\dfrac{1}{3}\pi{{r}^{2}h}}

Putting Values :

\longmapsto\tt{\dfrac{2200}{7}=\dfrac{1}{3}\times\dfrac{22}{7}\times{{r}^{2}}\times{12}}

\longmapsto\tt{\dfrac{2200}{7}=\dfrac{264{r}^{2}}{21}}

\longmapsto\tt{{r}^{2}=\dfrac{2200\times{21}}{7\times{264}}}

\longmapsto\tt{{r}^{2}=25}

\longmapsto\tt{r=\sqrt{25}}

\longmapsto\tt\bf{r=5\:cm}

Radius of Cone is 5 cm ..

Now ,

For Slant Height :

\longmapsto\tt{l=\sqrt{{(h)}^{2}+{(r)}^{2}}}

\longmapsto\tt{l=\sqrt{{(12)}^{2}+{(5)}^{2}}}

\longmapsto\tt{l=\sqrt{144+25}}

\longmapsto\tt{l=\sqrt{139}}

\longmapsto\tt\bf{l=13\:cm}

So , The Slant Height of Cone is 13 cm ...

Similar questions