the volume of right circular cone is 9856cm³.If the radius of base 14 cm.find the----->
1. height of cone
2.Slant height
Answers
Given :-
The volume of right circular cone is 9856cm³.If the radius of base 14 cm.
Find out :-
- Height of cone
- Slant height
Solution :-
- Volume of right circular cone = 9856cm³
- Radius of base = 14 cm
As we know that
→ Volume of cone = ⅓ πr²h
Where,
- r = radius
- h = height
According to the given condition
→ Volume of cone = 9856cm³
→ ⅓ πr²h = 9856
→ ⅓ × 22/7 × 14 × 14 × h = 9856
→ ⅓ × 22 × 2 × 14 × h = 9856
→ 44 × 14h/3 = 9856
→ h = 3 × 9856/44 × 14
→ l = 3 × 224/14
→ l = 3 × 16
→ l = 48 cm
•°• Height of cone = 48 cm
Now,
→ (Slant height)² = (radius)² + (height)²
→ l = √r² + h²
→ l = √(14)² + (48)²
→ l = √196 + 2304
→ l = √2500
→ l = 50 cm
•°• Slant height of cone is 50cm
________________________________
The volume of right circular cone is 9856 cm³. If the radius of base 14 cm. Find the :
- Height of Cone
- Slant Height
- The volume of right circular cone = 9856 cm³
- Radius of Base = 14 cm
- Height of Cone
- Slant Height
- Height of Cone = 48 cm
- Slant Height of Cone = 50 cm
♣ First Let's Find Height of Cone
Volume of Right Circular Cone = 9856 cm³
⇒ 1/3πr²h = 9856 cm³
⇒ 1/3 × π × r² × h = 9856 cm³
⇒ 1/3 × 22/7 × r² × h = 9856 cm³ (∵ π = 22/7)
⇒ 22 × 1/7 × 3 × r² × h = 9856 cm³
⇒ 22/21 × r² × h = 9856 cm³
⇒ 22/21 × r² × h = 9856 cm³ (Given r = 14 cm)
⇒ 22/21 × (14 cm)² × h = 9856 cm³
⇒ 22/21 × 196 cm² × h = 9856 cm³
⇒ (22 × 196)/21 cm² × h = 9856 cm³
⇒ 4312/21 cm² × h = 9856 cm³
⇒ 616/3 cm² × h = 9856 cm³
Multiplying both sides by 3
⇒ 3 × (616/3) cm² × h = 3 × 9856 cm³
⇒ 616 cm² × h = 29568 cm³
Dividing both sides by 616 cm²
⇒ (616 cm² × h)/616 cm² = 29568 cm³/616 cm²
⇒ h = 29568/616 cm
⇒ h = 48 cm
∴ Height of Cone = 48 cm
_____________________________________________
♣ Now Let's Find Slant Height
Slant Height = √(r² + h²)
⇒ Slant Height = √[(14 cm)² + h²] (Given r = 14 cm)
⇒ Slant Height = √[196 cm² + h²]
⇒ Slant Height = √[196 cm² + (48 cm)²] (We found : h = 48 cm)
⇒ Slant Height = √[196 cm² + 2304 cm²]
⇒ Slant Height = √[2500 cm²]
⇒ Slant Height = √[50² cm²]
⇒ Slant Height = √[50²] cm
⇒ Slant Height = 50 cm
∴ Slant Height of Cone = 50 cm
_____________________________________________
Know More :
_____________________________________________
Request :
If there is any difficulty viewing this answer in app, Kindly see this answer at Web (https://brainly.in/) for clear steps and understanding.
See the answer at :
brainly.in/question/30274268