the volume of right circular cone is 9856cm³.If the radius of base 14 cm.find the----->
1. height of cone
2.Slant height
3. Total surface area of cone
Answers
Given :-
The volume of the right circular cone
= 9856cm^3
Radius of the cone = 14cm
Solution 1 :-
Volume of the cone = 1/3πr^2h
Put the required values in the formula ,
9856 = 1/3 * 22/7 * 14 * 14 * h
h = 9856 * 3 * 7 / 22 * 14 * 14
h = 206976 / 4312
h = 48
Hence , The height of the cone is 48cm
Solution 2 :-
Radius of the cone = 14 cm
Height of the cone = 48cm
Now ,
( l )^2 = (radius)^2 + ( height )^2
Slant height ( l )^2 = √( 14)^2 + ( 48)^2
( l )^2 = 196 + 2304
( l )^2 = 2500
l = 50 cm
Thus , The slant height of a cone is 50 cm
Solution 3 :-
Total surface area of cone
Put the required values in the formula ,
TSA of cone = 22/7 * 14 ( 50 + 14)
TSA of cone = 22 * 2 * 64
TSA of cone = 2816 cm^2
Answer :
- Height of the right-circular cone, h = 48 cm
- Slant height of the right-circular cone, l = 50 cm
- Total surface area of the cone, T.S.A. = 2816 cm²
Explanation :
Given :
- Volume of the right-circular cone, V = 9856 cm³
- Base radius of the cone, r = 14 cm
To find :
- Height of the right-circular cone, h = ?
- Slant height of the right-circular cone, l = ?
- Total surface area of the cone, T.S.A. = ?
Knowledge required :
- Formula for Volume of a right-circular cone :
⠀⠀⠀⠀⠀⠀⠀⠀⠀V = ⅓πr²h⠀
[Where : V = Volume of the right-circular cone; r = Base radius of the right-circular cone; h = Height of the right-circular cone]
- Formula for slant height of a right-circular cone :
⠀⠀⠀⠀⠀⠀⠀⠀⠀l = √(h² + r²)⠀
[Where : l = Slant height of the right-circular cone; r = Base radius of the right-circular cone; h = Height of the right-circular cone]
- Formula for Total surface of a right-circular cone :
⠀⠀⠀⠀⠀⠀⠀⠀⠀T.S.A. = πr(r + l)⠀
[Where : T.S.A. = Total surface area of the right-circular cone; r = Base radius of the right-circular cone; h = Height of the right-circular cone]
Solution :
To find the radius of the right-circular cone :
By using the formula for volume of a right-circular cone and substituting the values in it, we get :
⠀⠀=> V = ⅓πr²h
⠀⠀=> 9856 = ⅓ × 22/7 × 14² × h
⠀⠀=> 9856 × 3 = 22/7 × 196 × h
⠀⠀=> 9856 × 3 = 22 × 28 × h
⠀⠀=> 29568 = 616h
⠀⠀=> 29568/616 = h
⠀⠀=> 48 = h
⠀⠀⠀⠀⠀∴ h = 48 cm
Hence the height of the cone is 48 cm.
To find the slant height of the right-circular cone :
By using the formula for slant height of a cone and substituting the values in it, we get :
⠀⠀=> l = √(h² + r²)
⠀⠀=> l = √(48² + 14²)
⠀⠀=> l = √(2304 + 196)
⠀⠀=> l = √2500
⠀⠀=> l = 50
⠀⠀⠀⠀⠀∴ l = 50 cm
Hence the slant height of the cone is 50 cm.
To find the total surface area of the right-circular cone :
By using the formula for total surface area of a right-circular cone and substituting the values in it, we get :
⠀⠀=> T.S.A. = πr(r + l)
⠀⠀=> T.S.A. = 22/7 × 14 × (14 + 50)
⠀⠀=> T.S.A. = 22/7 × 14 × 64
⠀⠀=> T.S.A. = 22 × 2 × 64
⠀⠀=> T.S.A. = 2816
⠀⠀⠀⠀⠀∴ T.S.A. = 2816 cm²
Hence the total surface area of the cone is 2816 cm².