Math, asked by ramkiahordaga, 1 month ago

the volume of right circular cylinder is 1848cm³ and its height 12 cm find its radius and total surface or cylinder​

Answers

Answered by NARUTOANIMELOVER
1

Answer:

Right cylinder

Solve for radius

r≈7cm

h Height

12

cm

V Volume

1848

cm³

Using the formula

V=πr2h

Solving forr

r=V

πh=1848

π·12≈7.00141cm

Step-by-step explanation:

Mark brainiest if you want

Hope it helps

Answered by XxMrZombiexX
54

Given information : The volume of right circular cylinder is 1848cm³ and its height 12 cm.

Need to find out : Radius of cylinder and total surface area of cylinder

 \qquad \rule{80mm}{0.5mm}

We have , \\ \begin{gathered}\frak{we\;have}\begin{cases}\sf{\:\; \:Height   =  \bf{12cm}  }\\\sf{ \: \: \:  volume \:  of  \: circular  \: cylinder= \bf{1848 {cm}^{3} }}\\ \end{cases}\end{gathered} \\  \\   \maltese \: \textsf{Let the Radius of cylinder be 'r' } \\  \\  \\   \red \bigstar\blue{\underline  \textbf{As we know that }} \\  \\   \underline{ \boxed{\pmb{ \bf{Curved  \: surface  \: area  \: o f  \: cylinder = 2π {r}^{} h}}}} \\  \\ \begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered} {\begin{gathered} \sf{} \: \: \: \huge\boxed{ \begin{array}{cc} \:  \small{ \textbf{where}}\: \\  \small π    =  \frac{22}{7}   \\  \small \:  \sf \: r\: = radius \: \: \\  \small\sf \: h =  \: height\: \: \: \: \: \: \: \end{array}} \\ \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \sf{} \end{gathered}}\end{gathered}\end{gathered}\end{gathered}\end{gathered}\end{gathered} \\  \\  \underline{\red \bigstar{ \blue{ \textbf{Substitute in formula we get }}}} \\  \\  \dashrightarrow \tt{ \: Curved\; surface\; area_{ \green{(cylinder)}} =  \pi {r}^{2} h} \\  \\ \dashrightarrow \tt \:1848 = 2 \times  \frac{22}{7}  \times r \times 12 \\  \\ \dashrightarrow \tt1848 =  \frac{44}{7}  \times r \times 12 \\  \\ \dashrightarrow \tt1848 =  \frac{528}{7}  \times r \\  \\ \dashrightarrow \tt1848 = 76 \times r \\  \\  \dashrightarrow \tt \: r =   \cancel\frac{1848}{76}  \\  \\  \dashrightarrow \tt \underline{ \boxed{ \frak{radius = 24cm}}} \\  \\  \\ \pmb{\textbf{\underline{Now we find Volume of cylinder }}} \\  \\  \\  \underline{ \boxed{ \frak{Volume \:  of \:  cylinder =  \pi {r}^{2} h}}} \\  \\   \underline\textbf{substitute values \: in \: formula\: } \\  \\ \dashrightarrow \tt \: Volume_{ \red{cylinder}} =   \frac{22}{7}  \times  {(24)}^{2}  \times 12 \\  \\ \dashrightarrow \tt \: Volume_{ \red{cylinder}} = \frac{22}{7}  \times 24 \times 24 \times 12 \\  \\ \dashrightarrow \tt \: Volume_{ \red{cylinder}} = \frac{22}{7}  \times 576 \times 12 \\  \\ \dashrightarrow \tt \: Volume_{ \red{cylinder}} = \frac{22}{7}  \times 6912 \\  \\ \dashrightarrow \tt \: Volume_{ \red{cylinder}} = \frac{152064}{7}  \\  \\ \dashrightarrow \tt \: \underline{  \boxed{ \sf \: Volume_{ \red{cylinder}} =21,724 {cm}^{3}  }}\\  \\\\

Therefore The volume of cylinder be 21,724cm³

Similar questions