Math, asked by samratshivam141197, 2 days ago

the volume of right cricular clyinder is 2310cm³.if the radius of its base is 7cm find its height​

Answers

Answered by ItzzTwinklingStar
32

Given:

  • Volume of a right circular cylinder is 2310 cm³.
  • Radius of its base is 7 cm.

To find:

Height of circular cylinder.

formula used:

 \\\bigstar \:  \: { \underline{\boxed{\frak{\purple{Volume~ of~ a~ Cylinder = \pi r^2h}}}}}\\

Solution:

height of cylinder:

{\sf{:\implies{\pi r^2h = 2310}}}\\\\

{\sf{:\implies{\dfrac{22}{7}\times 49\times h = 2310}}}\\\\

{\sf{:\implies{height =\dfrac{2310}{22\times 7}}}}\\\\

{\sf{:\implies{height =\dfrac{330}{22}}}}\\\\

{\sf{:\implies{height =15 cm ²}}}\\\\

:\implies{\frak{ \pink{height = 15 cm²}}}\:\bigstar

Hence, height of circular cylinder is 15 cm ² .

Answered by OoAryanKingoO78
17

\large{\underline{\sf{Solution-}}}

GiveN:-

The volume of a right circular cylinder is 2310 cm³. is the Radius of its base is 7 cm. find its height

To finD:

Height of circular cylinder.

formulA RequireD:

 \pink{\bigstar} \:  \: { \underline{\boxed{\tt\color{purple}{Volume~ of~ a~ Cylinder = \frak\color{blue}{\pi r^2h}}}}}\\

SolutioN:

Height of cylinder:

{\sf{\longmapsto{\pi r^2h = 2310}}}\\\\

{\sf{\longmapsto{\dfrac{22}{7}\times 49\times h = 2310}}}\\\\

{\sf{\longmapsto{height =\dfrac{2310}{22\times 7}}}}\\\\

{\sf{\longmapsto{height =\dfrac{330}{22}}}}\\\\

{\sf{\longmapsto{height =15 cm ²}}}\\\\

:\implies{\tt\color{magenta}{height = 15 cm²}}

\bullet Hence,

height of circular cylinder is 15 cm ² .

▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂

HOPES IT HELPS UHH!:)

Similar questions