Math, asked by sundaskavyanjali299, 5 days ago

the volume of the largest solid cone that can be cut off from a solid hemisphere with radius r unit will be

a. \: 4\pi  \: r {}^{3} cubic \: unit
b. \: 3\pi \: r { }^{3} cubic \: unit
c. \: \pi \: r {}^{3}  \div 4 \: cubic \: unit
d. \: \pi \: r {}^{3}  \div 3 \: cubic \: unit

Answers

Answered by praneeth3374
2

Answer ; D

Step-by-step explanation:

The radius of the hemisphere = r unit

∴ the radius of the cone = r unit

and height of the cone = r unit

∴ volume of the cone = 13πr2×rcubic - unit

=πr33 cubic - unit

Similar questions