Math, asked by KabirRawat, 7 months ago

The volume of the right circular cylinder is 1100 cm3, and the radius of its base is 5 cm. Find its curved surface area. (i give u 23 points instead of 10 ) plz solve step by step ​

Answers

Answered by AishwaryaIshu
2

Step-by-step explanation:

hope this helps you...........

Attachments:
Answered by TheProphet
2

S O L U T I O N :

\underline{\bf{Given\::}}

  • Volume of right circular cylinder, (V) = 1100 cm³
  • Radius of right circular cylinder, (r) = 5 cm

\underline{\bf{Explanation\::}}

Using formula of the volume of cylinder;

\boxed{\bf{Volume = \pi r^{2} h\:\:\:(cubic\:unit)}}

A/q

\mapsto\tt{Volume\:of\:right\:circular\:cylinder = \pi r^{2} h}

\mapsto\tt{1100 = \dfrac{22}{7} \times 5 \times 5 \times  h}

\mapsto\tt{\cancel{1100 }= \dfrac{\cancel{22}}{7} \times 5 \times 5 \times  h}

\mapsto\tt{50 = \dfrac{1}{7} \times 25 \times h}

\mapsto\tt{50 \times 7 =   25 \times h}

\mapsto\tt{350 =   25 \times h}

\mapsto\tt{h = \cancel{\dfrac{350}{25} }}

\mapsto\bf{h = 14\:cm}

Now,

Using formula of the curved surface area of cylinder;

\boxed{\bf{C.S.A = 2\pi rh\:\:(sq.unit)}}

\mapsto\tt{C.S.A = 2 \times \dfrac{22}{7} \times 5 \times 14}

\mapsto\tt{C.S.A = 2 \times \dfrac{22}{\cancel{7}} \times 5 \times \cancel{14}}

\mapsto\tt{C.S.A = (2 \times 22 \times 5 \times 2)}

\mapsto\bf{C.S.A = 440\:cm^{2}}

Thus,

The curved surface area of cylinder will be 440 cm² .

Similar questions