Math, asked by dikshatiwari250, 3 months ago

the volume of the sphere is 4851cm cube, find its diameter​

Answers

Answered by Anonymous
6

Answer :

  • Diameter of sphere is 21cm

Given :

  • Volume of the sphere is 4851cm³

To find :

  • Diameter

Solution :

As we know that :

  • Volume of sphere = 4/3 πr³

Given Volume of sphere is 4851cm

  • As we know that sphere is 3 dimensional object which is perfectly round in shape

⟶ 4/3 πr² = 4851

⟶ r³ = 4851 × 3 /4× π

⟶ r³ = 14553/12. 564

⟶ r³ = 1158.309

⟶ r = √1158.309

⟶ r = 10.5

Now we have to find the diameter

  • Diameter of sphere = 2 × radius = 2 × 10.5 = 21cm

Hence , Diameter of sphere is 21cm

Answered by Anonymous
6

AnswEr-:

  • \underline {\boxed{\dag{\mathrm {\blue{Diameter \:of\:Sphere \:-: 21\:cm}}}}}

Explanation-:

  • \mathrm { Given-:}

  • The volume of sphere -: 4851cm³

  • \mathrm{ To\:Find-:}

  • The Diameter of sphere .

\dag{\mathcal{Solution \:of\:Question -:}}

  • \underbrace {\mathrm { Understanding \:The\:Concept \:-:}}

  • We have to find the Diameter of Sphere when Volume of sphere is given .

  • For this we have to put the given volume of sphere in the Formula for Volume of Sphere .By doing this

  • We can get the Diameter of Circle.

As , We know that ,

  • \underline {\boxed{\dag{\mathrm {\red{Volume \:of\:Sphere \:-:\dfrac{4}{3} \times \pi \times Radius^{3}\: cubic.units }}}}}

  • \mathrm { Here-:}

  • \longrightarrow {\mathrm {Volume =4851 cm^{3}}}

  • \pi=3.14\:or\:\dfrac{22}{7}

Now , By Putting Known Values-:

  • \longrightarrow {\mathrm { 4851cm^{3} = \dfrac{4}{3} \times \dfrac{22}{7} \times Radius^{3}}}

  • \longrightarrow {\mathrm { 4851cm^{3} = \dfrac{4}{3} \times 3.14  \times Radius^{3}}}

  • \longrightarrow {\mathrm { \dfrac{4851}{3.14} = \dfrac{4}{3} \times Radius^{3}}}

  • \longrightarrow {\mathrm { \dfrac{4851 \times 3 }{3.14\times 4 } =   Radius^{3}}}

Or ,

  • \longrightarrow {\mathrm { Radius ^{3} = \dfrac{4851 \times 3 }{3.14\times 4 } =   }}

  • \longrightarrow {\mathrm {Radius ^{3} = \dfrac{14553 }{12.56 } }}

  • \longrightarrow {\mathrm {Radius ^{3} = \dfrac{\cancel {14553} }{\cancel{12.56} } }}

  • \longrightarrow {\mathrm { Radius ^{3} = 1158.678 }}

  • \longrightarrow {\mathrm {Radius  = \sqrt[3]{1158.678} }}

  • \longrightarrow {\mathrm { Radius  = 10.5 cm }}

Therefore ,

  • \underline {\boxed{\dag{\mathrm {\blue{Radius \:of\:Sphere \:-: 10.5 \:cm}}}}}

As , We know that ,

  • \underline {\boxed{\dag{\mathrm {\red{Diameter \:of\:Circle \:-: Radius \times 2 }}}}}

\mathrm { Here-:}

  • \longrightarrow {\mathrm { Radius  = 10.5 cm }}

Now , By Putting known Values-:

  • \longrightarrow {\mathrm { Diameter =10.5 \times 2 }}

  • \longrightarrow {\mathrm { Diameter =21cm }}

Hence,

  • \underline {\boxed{\dag{\mathrm {\blue{Diameter \:of\:Sphere \:-: 21 \:cm}}}}}

_______________________________________________________

Similar questions