Math, asked by goldikthakur, 7 months ago

the volume of the spherical ball is increasing at the rate of 4πcc/sec.
find the rate of the radius and the surface area are changing when the volume is 288π cc.​

Answers

Answered by ItzLoveHunter
20

\huge\bf\boxed{\boxed{\underline{\red{Question!!}}}}

The volume of the spherical ball is increasing at the rate of 4πcc/sec. Find the rate of the radius and the surface area are changing when the volume is 288π cc.

\huge\bf\boxed{\boxed{\underline{\red{Answes!!}}}}

Volume of a spherical ball increase at the rate of = 4πcc/s

\huge\mathrm\</em><em>p</em><em>i</em><em>n</em><em>k</em><em>{</em><em>\</em><em>f</em><em>r</em><em>a</em><em>c</em><em>{</em><em>dv</em><em>}</em><em>{</em><em>dt</em><em>}</em><em> </em><em>=</em><em> </em><em>4</em><em>}

Now, we are required to find the rate of the increase of the surface area when the volume is

= 288π

\huge\mathrm\</em><em>p</em><em>i</em><em>n</em><em>k</em><em>{</em><em>\</em><em>f</em><em>r</em><em>a</em><em>c</em><em>{</em><em>dA</em><em>}</em><em>{</em><em>dt</em><em>}</em><em> </em><em>=</em><em> </em><em>?</em><em>¿</em><em>}

Now :

Since the volume of the sphere is = 288 π

we can find the radius = !??

using the volume of a sphere is \frac{</em><em>4</em><em>}{</em><em>3</em><em>}</em><em>πr³</em><em>

\frac{4}{3}πr³ = 288π

taking Reciprocal :

➪ r³ = 288 × \frac{3}{4}

➪ r³ = 216

➪ r = 6

Now :

To find \frac{</em><em>dv</em><em>}{dt}

☞︎︎︎ \frac{dv}{dt} = \frac{dv}{dr} × \frac{dr}{dt}

Differentiate the volume of the sphere gives us:

\frac{dv}{dt} = \frac{4}{3}πr³ ×3r²

denominator and numerator 3 get cancel :

4πr²

Now :

to find \frac{dr}{dt} :

☞︎︎︎ \frac{dv}{dt} = \frac{dv}{dr} × \frac{dr}{dt}

➪ 4πr² = \frac{4}{3}πr³ × \frac{dr}{dt}

\cancel\frac{4π}{4πr²} × = \frac{dr}{dt}

\frac{dr}{dt} = \frac{1}{r²}

Now the next process :

to fine \frac{</em><em>dA</em><em>}{dt}

☞︎︎︎ \frac{dA}{dt} = \frac{dA}{dr} × \frac{dr}{dt}

Remember, the surface area of the sphere is

Remember, the surface area of the sphere is 4πr²

So :

☞︎︎︎ A = 4πr²

☞︎︎︎ \frac{dA}{dt} = 8πr

We already found that r = 6 and \frac{dr}{dt} = \frac{1}{r²}

Putting this all together,

☞︎︎︎ \frac{dA}{dt} = \frac{dA}{dr} × \frac{dr}{dt}

\frac{dA}{dt} = 8πr × \frac{1}{r²}

\frac{dA}{dt} = \frac{8πr}{r²}

r and r get cancel :

\frac{dA}{dt} = \frac{8π}{r}

\frac{dA}{dt} = \frac{8π}{6}

\frac{dA}{dt} = \frac{4}{3}π

\huge\bf\boxed{\boxed{\underline{\red{</em><em>Ans</em><em> </em><em>=</em><em> </em><em>\</em><em>f</em><em>r</em><em>a</em><em>c</em><em>{</em><em>4</em><em>}</em><em>{</em><em>3</em><em>}</em><em>π</em><em>}}}}

Answered by Anonymous
2

gudd bye .... thank you for being all that time with me....now it's my time to go...as there is a hii there is always a bye....so I have to go now...time spend with you all was really amazing and I enjoyed a lot here...thank you for everything... BORAHAEE ♥️

I will never forget u ಥ_ಥ

GOODBYE...

-aizah

Similar questions