Chemistry, asked by haripriya70, 10 months ago

) The wave length of light is 7000 A. The no. of photons required to provide 20J of energy is
approximately

Answers

Answered by TheSentinel
28

Question:

Wavelength of light 7000 A . Number of photons required to provide 20J energy.

Answer:

Photons required : \rm\pink{ 7 \times 10^{19}}

Given:

Wavelength of light : 7000 A.

Energy : 20 J.

To Find:

We are given ,

Wavelength of light (λ) : 7000 A.

Energy (E) : 20 J.

Let , the number of photons be n.

We know,

e = nh \nu

............. plank's energy equation.

Where ,

e = energy

n= number of photons

h= plank's constant

v = frequency

we know,

h = 6.626 \times  {10}^{ - 34} J

but \:  \: \nu  =  \frac{c}{\lambda}

c = 3 \times  {10}^{8}   \frac{m}{s}

also ,

7000A = 7000 \times 1 {10}^{ - 10}

\rm\large{20 = n \times 6.626 \times  {10}^{ - 34}   \times  \frac{3 \times  {10}^{8} }{7000 \times  {10}^{ - 10} }}

\rm\large{n =  \frac{20 \times 7000 {10}^{ - 10} }{6.626 \times  {10}^{34} \times 3 \times  {10}^{8}  }}

\rm\large{n =  \frac{2 \times 7 \times  {10}^{4} {10}^{ - 10}  }{6.626 \times 3 \times  {10}^{ - 26} }}

\rm\large{n =  \frac{14 \times  {10}^{6} }{6.626 \times 3 {10}^{ - 26} }}

\rm\large{n =  \frac{14 \times  {10}^{6}  {10}^{26} }{6.626 \times 3}}

\rm\large{n =  \frac{14 \times  {10}^{20} }{6.626 \times 3} }

\rm\large{n =  \frac{14 \times  {10}^{20} }{19.878} }

\rm\large{n = 7.04 \times  {10}^{19} }

Number of photons : \rm\large\pink{ 7 \times 10^{19} \  ...... ( approx )}

Similar questions