Physics, asked by sanketlengure, 7 months ago

the wavelength of the de- broglie wave associated by an electron accelerate with 100 V is​

Answers

Answered by Anonymous
2

According to de-Broglie hypothesis, the wavelength of the wave association with electron is given by:

 \boxed{ \bf{ \lambda =  \dfrac{h}{  \sqrt{2meV} } }}

  • h → Plank's Constant  \rm (6.63 \times 10^{-34} \ Js)
  • m → Mass of electron  \rm (9.1 \times 10^{-32} \ kg)
  • e → Charge on electron  \rm (1.6 \times 10^{-19} \ C)
  • V → Potential  \rm (100 \ V)

By substituting values we get:

  \rm \leadsto \lambda =  \dfrac{h}{ \sqrt{2meV} }  \\  \\  \rm \leadsto \lambda =  \dfrac{6.63 \times 10^{-34} \ Js}{ \sqrt{2 \times 9.1 \times 10^{-32} \ kg \times 1.6 \times 10^{-19} \ C \times V} }  \\  \\  \bf \leadsto \lambda =   \sqrt{ \dfrac{150}{V} }    \:  \text{\AA} \\  \\  \rm \leadsto \lambda =   \sqrt{ \dfrac{150}{100} }   \:  \text{\AA}  \\  \\  \rm \leadsto \lambda =    \sqrt{1.5}  \: \text{\AA}  \\  \\   \rm \leadsto \lambda =   1.2  \: \text{\AA}

 \therefore de-Broglie wavelength of electron  \sf (\lambda) =  \sf 1.2 \ \text{\AA}

Similar questions