Math, asked by vprabhavathi, 11 months ago

The weight of a lead pipe is 3.4 m long,of the external diameter is 2.4 cm and thickness of lead is 2 millimeters then find the weight of lead pipe if centimeter cube is 11 grams​

Answers

Answered by amankumaraman11
1

Given :-

{ \boxed{ \tiny{ \text{Length of a lead pipe[h]= 3.4 m (= 340 cm)}}}}

{ \boxed{ \tiny{ \text{External Diameter of the pipe [D]= 2.4 cm}}}}

{ \boxed{ \tiny{ \text{Thickness of the pipe = 2 mm (= 0.2 cm)}}}}

{ \boxed{ \tiny{ \bf{Density \:  of \:  lead \:  in  \: the  \: pipe = 11g \:  cm^{ - 3} }}}}

Now,

 { \boxed{ \tiny{\text{Internal Diameter of the pipe[d] = (2.4 -- 0.2) cm }}}} \\  { \boxed{ \tiny{\text{ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  = 2.2 cm \:  \:  \:  \:  \:  \:  \:  \:}}}}

Thus,

{ \boxed{ { \bf{Volume  \: of  \: lead \:  in \:  the \:  pipe = \pi ( \frac{D}{2} )^{2} h - \pi ( \frac{d}{2} )^{2} h }}}} \\  { \boxed{ { \bf{  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: = \pi h [ ( \frac{D}{2} )^{2} -  (\frac{d}{2})^{2}  ]}}}} \\ { \boxed{ { \bf{   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: =  \frac{22}{7}  \times340 \times [  ( \frac{2.4}{2} )^{2} -  ( \frac{2.2}{2} )^{2}  ]}}}} \\ { \boxed{ { \bf{    \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: =  \frac{22 \times 340}{7}  \times ( \frac{5.76}{2}  -  \frac{4.84}{2} )}}}} \\ { \boxed{ { \bf{ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: =  \frac{22 \times 340}{7} \times  \frac{0.92}{2}  }}}} \\ { \boxed{ { \bf{   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: =  \frac{22 \times 340}{7} \times  \frac{92}{100 \times 2}  }}}} \\ { \boxed{ { \bf{  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: =  \frac{688160}{14 \times 100}  =  \frac{68816}{14 \times 10} }}}} \\ { \boxed{ { \bf{   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: =  \frac{4915.42}{10} = 491.5  \: {cm}^{2}  }}}}

Hence,

 \bf{Weight  \: of  \: the \:  pipe = (v \times d)} \\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \: =  \frac{4915}{10}  \times 11 =  \sf 5406.5 \: g \\  \\  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  \:  \:  \:  \:  \:  \:  \:  =  \sf5.4065 \: kg

Similar questions