Math, asked by aakanksha2006, 9 months ago

the whole surface of a cuboid is 214cm square , volume is 210cm cube and the area of the base is 42cm square . find its , edge.​

Answers

Answered by sanjaynair2005
2

Answer:

hope it helps

Step-by-step explanation:

plz mark my answer as brainliest....

Attachments:
Answered by SarcasticL0ve
8

Given:

  • Total surface area of a cuboid = 214 cm²
  • Volume of cuboid = 210 cm³
  • Area of base of cuboid = 42 cm²

⠀⠀⠀⠀⠀⠀⠀

To find:

  • Dimensions of cuboid.

⠀⠀⠀⠀⠀⠀⠀

Solution:

⠀⠀⠀⠀⠀⠀⠀

\underline{\bigstar\:\boldsymbol{As\:per\:given\: Question\::}}

⠀⠀⠀⠀⠀⠀⠀

\star\;\sf Area\;of\;base = l \times b

⠀⠀⠀⠀⠀⠀⠀

:\implies\sf l \times b = 42

⠀⠀⠀⠀⠀⠀⠀

:\implies\bf lb = 42\;cm^2\;\;\;\;\;\;\;\;\;\bigg\lgroup\bf eq.\;(1) \bigg\rgroup

⠀⠀⠀⠀⠀⠀⠀

{\underline{\frak{\dag\;We\;know\;that\;:}}}

⠀⠀⠀⠀⠀⠀⠀

\star\;{\boxed{\bf{\purple{Volume_{\;(cuboid)} = l \times b \times height}}}}

⠀⠀⠀⠀⠀⠀⠀

{\underline{\frak{\dag\;Putting\;values\;:}}}

⠀⠀⠀⠀⠀⠀⠀

:\implies\sf 210 = l \times b \times h

⠀⠀⠀⠀⠀⠀⠀

:\implies\sf 210 = 42 \times h\;\;\;\;\;\;\;\;\;\bigg\lgroup\bf \because\; l \times b = 42 \bigg\rgroup

⠀⠀⠀⠀⠀⠀⠀

:\implies\sf h = \dfrac{210}{42}

⠀⠀⠀⠀⠀⠀⠀

:\implies\sf h = \cancel{ \dfrac{210}{42}}

⠀⠀⠀⠀⠀⠀⠀

:\implies{\underline{\boxed{\bf{\purple{5\;cm}}}}}\;\bigstar

━━━━━━━━━━━━━━━

Given that,

Total surface area of a cuboid = 214 cm²

⠀⠀⠀⠀⠀⠀⠀

{\underline{\frak{\dag\;We\;know\;that\;:}}}

⠀⠀⠀⠀⠀⠀⠀

\star\;{\boxed{\bf{\pink{TSA_{\;(cuboid)} = 2(lb + bh + hl)}}}}

⠀⠀⠀⠀⠀⠀⠀

{\underline{\frak{\dag\;Putting\;values\;:}}}

⠀⠀⠀⠀⠀⠀⠀

:\implies\sf 2(l \times b + b \times 5 + 5 \times l) = 214

⠀⠀⠀⠀⠀⠀⠀

:\implies\sf 2(lb + 5b + 5l) = 214

⠀⠀⠀⠀⠀⠀⠀

:\implies\sf 2(lb + 5b + 5l) = 214

⠀⠀⠀⠀⠀⠀⠀

:\implies\sf 2(l + b)5 + 2lb = 214

⠀⠀⠀⠀⠀⠀⠀

:\implies\sf 10(l + b) + 2 \times 42 = 214\;\;\;\;\;\;\;\;\;\bigg\lgroup\bf \because\;lb = 42 \bigg\rgroup

⠀⠀⠀⠀⠀⠀⠀

:\implies\sf 10(l + b) + 84 = 214

⠀⠀⠀⠀⠀⠀⠀

:\implies\sf 10(l + b) = 214 - 84

⠀⠀⠀⠀⠀⠀⠀

:\implies\sf 10(l + b) = 214 - 84

⠀⠀⠀⠀⠀⠀⠀

:\implies\sf 10(l + b) = 130

⠀⠀⠀⠀⠀⠀⠀

:\implies\sf l + b = \dfrac{130}{10}

⠀⠀⠀⠀⠀⠀⠀

:\implies\sf l + b = \cancel{ \dfrac{130}{10}}

⠀⠀⠀⠀⠀⠀⠀

:\implies\sf l + b = 13

⠀⠀⠀⠀⠀⠀⠀

:\implies\bf  l = (13 - b)\;\;\;\;\;\;\;\;\;\bigg\lgroup\bf eq.\;(2) \bigg\rgroup

━━━━━━━━━━━━━━━

{\underline{\sf{\bigstar\;Now,\;Putting\;eq.(2)\;in\;eq.(1)\;:}}}

⠀⠀⠀⠀⠀⠀⠀

:\implies\sf (13 - b)b = 42

⠀⠀⠀⠀⠀⠀⠀

:\implies\sf 13b - b^2 = 42

⠀⠀⠀⠀⠀⠀⠀

:\implies\sf b^2 - 13b + 42 = 0

⠀⠀⠀⠀⠀⠀⠀

\;\;\;\;{\underline{\frak{\dag\; Splitting\;middle\;term\;:}}}

⠀⠀⠀⠀⠀⠀⠀

:\implies\sf b^2 - 7b - 6b + 42 = 0

⠀⠀⠀⠀⠀⠀⠀

:\implies\sf b(b - 7) -6(b - 7) = 0

⠀⠀⠀⠀⠀⠀⠀

:\implies\sf (b - 7)(b - 6) = 0

⠀⠀⠀⠀⠀⠀⠀

:\implies\bf b = 6,7

⠀⠀⠀⠀⠀⠀⠀

{\underline{\sf{\bigstar\;Now,\; Substituting\;values\;of\;b\;in\;eq.(2)\;:}}}

⠀⠀⠀⠀⠀⠀⠀

\;\;{\underline{\sf{\dag\;At\;b = 6\;:}}}

⠀⠀⠀⠀⠀⠀⠀

:\implies\sf l = 13 - 6

⠀⠀⠀⠀⠀⠀⠀

:\implies\sf l = 7

⠀⠀⠀⠀⠀⠀⠀

\;\;{\underline{\sf{\dag\;At\;b = 7\;:}}}

⠀⠀⠀⠀⠀⠀⠀

:\implies\sf l = 13 - 7

⠀⠀⠀⠀⠀⠀⠀

:\implies\sf l = 6

⠀⠀⠀⠀⠀⠀⠀

We know that, Length is always greater than breadth.

⠀⠀⠀⠀⠀⠀⠀

Therefore,

  • Length of Cuboid = 7 cm
  • Breadth of cuboid = 6 cm
  • Height of cuboid = 5 cm

⠀⠀⠀⠀⠀⠀⠀

\therefore Dimensions of Cuboid is 7 cm × 6 cm × 5 cm.

Similar questions