Math, asked by anuskakhatiwada20, 11 months ago

The width of a box is two third of its length and height is one
Third of its length. If the volume of the box is 48cm^3. Find the
area of base of the box .​

Answers

Answered by nigaranjum18
4

___&& SOLUTION&&___

*GIVEN*

  • VOLUME=48CM^2

*LET*

  • The length be x
  • The width be 2/3x
  • The height be 1/3x

*Volume of box*

=>l*b*h=48

=>x*2/3x*x/3=48

=>2x^3=48*9

=>x^3=24*9

=>x=√216=6cm

*Area of its base

=>l*b

=6*2/3*6

=6*4

=24cm^2

Answered by XxItzAnvayaXx
3

FINAL ANSWER:-

area of box = 88cm^{2}

base of box =l*b24cm^{2}

l=6cm\\b=4cm\\h=2cm

GIVEN:-

width of a box is two-third of its length=\frac{2}{3} l

height is one-third of its length=\frac{l}{3}

TO FIND:-

  • area
  • base

FORMULAS USED:-

  • volume \:of\:cuboid=l*b*h
  • TSA\:of\:cuboid=2(lb+lh+bh)

SOLUTION:-

width of box = \frac{2l}{3}

height of box =\frac{l}{3}

length of box = l

volume \:of\:box=l*b*h

48= l*\frac{2}{3} l*\frac{1}{3} l\\48=\frac{l*2l*l}{9} \\48=\frac{2l^{3}}{9} \\2l^{3}=48*9\\2l^{3}=432\\l^{3}=\frac{432}{2} \\l^{3}=216\\l=\sqrt[3]{216} \\l=6\:cm

hence as we have find out length so let's find width and height

width of a box is two-third of its length=\frac{2}{3} l\frac{2*6}{3}4 \:cm

height is one-third of its length=\frac{l}{3}\frac{6}{3}2\:cm

here,

l=6cm

b=4cm

h=2cm

area of box = TSA\:of\:cuboid=2(lb+lh+bh)

=2( 6 * 4  +6* 2+ 4 * 2 )\\= 2 ( 24 +12 + 8 )\\= 2(44) \\=88cm^{2}

base of the box = l*b

=6*4\\=24cm^{2}

⇔⇔⇔⇔⇔⇔⇔⇔⇔⇔⇔⇔⇔⇔⇔⇔⇔⇔⇔⇔⇔⇔⇔⇔⇔⇔⇔

some important formulas are:-

TSA\:of\:cylinder=2\pi rh +2\pi r^{2}\\TSA\:of\:hemisphere=3\pi r^{2}\\TSA\:of\:sphere=4\pi r^{2}\\TSA\:of\:cone=\pi r(r+l)\:\:or \:\:\pi rl + \pi r^{2}\\TSA\:of\:cube=6s^{2}\\TSA\:of\:cuboid=2(lb+lh+bh)\\\\CSA\:of\:cylinder=2\pi rh\\CSA\:of\:hemisphere=2\pi r^{2}\\CSA\:of\:sphere=4\pi r^{2} (same\:as\:TSA\:of\:sphere)\\CSA\:of\:cone=\pi rl\\CSA\:of\:cube=4s^{2}\\CSA\:of\:cuboid=2(lb+bh)

Similar questions