Social Sciences, asked by kitcat5853, 3 months ago

The width of a rectangle is 2 cm longer than its length. Identify the polynomial that represents the area of the rectangle, and its area when the length is 5 cm.

Attachments:

Answers

Answered by TheWonderWall
0

\large\sf\underline{Answer\::}

Let the height be h.

  • Then base would be (h + 6) cm

We know :

\small{\mathfrak\blue{Area\:of\:rectangle=\frac{1}{2} \times b \times h }}

According to the question :

  • h = 10 cm

  • b = (h + 6) = 10 + 6 = 16 cm

Now let's substitute the value in the formula:

\sf\implies\:\frac{1}{2} \times 16 \times 10

\sf\implies\:\frac{1}{2} \times 160

\sf\implies\:\frac{160}{2}

\sf\implies\:\cancel{\frac{160}{2}}

\small{\underline{\boxed{\mathrm\red{\implies\:Area_∆\:=\:80\:cm^{2}}}}}

So yeah option ( c ) is correct \color{maroon}{\checkmark}

!! Hope it helps !!

Answered by rabiazahidmalik656
0

Answer:

\large\sf\underline{Answer\::}

Answer:

Let the height be h.

Then base would be (h + 6) cm

We know :

\small{\mathfrak\blue{Area\:of\:rectangle=\frac{1}{2} \times b \times h }}Areaofrectangle=

2

1

×b×h

According to the question :

h = 10 cm

b = (h + 6) = 10 + 6 = 16 cm

Now let's substitute the value in the formula:

\sf\implies\:\frac{1}{2} \times 16 \times 10⟹

2

1

×16×10

\sf\implies\:\frac{1}{2} \times 160⟹

2

1

×160

\sf\implies\:\frac{160}{2}⟹

2

160

\sf\implies\:\cancel{\frac{160}{2}}⟹

2

160

\small{\underline{\boxed{\mathrm\red{\implies\:Area_∆\:=\:80\:cm^{2}}}}}

⟹Area

=80cm

2

So yeah option ( c ) is correct \color{maroon}{\checkmark}✓

!! Hope it helps !!

Similar questions