Science, asked by MrNobita23, 5 hours ago

The width of a rectangle is four-fifth its length. If the perimeter of the rectangle is 90 m, find the length and breadth of the rectangle.​

Answers

Answered by WesternDragon1
15

Let the length of the rectangle be x . Then, the breadth of the rectangle

=

 \frac{4}{5}x

According to the question, perimeter of the rectangle

=

90m

 = 2(x +  \frac{4}{5}x) = 90

 = x +  \frac{4}{5}x =  \frac{90}{2} (transposing \: 2 \: to \: rhs)

 =  \frac{5x + 4x}{5}  = 45

 =  \frac{9x}{5} = 45

x =  \frac{45 \times 5}{9}  \: (transposing \: 9 \: and \: 5 \: to \: rhs)

x = 25

Therefore length of the rectangle, x= 25m and breadth of the rectangle,

 \frac{4}{5}x =  \frac{4}{5} \times 25 = 20m

 \red{answer} \:  \blue{ = 20m}

Answered by Anonymous
36

Answer:

\begin{gathered}{\underline{\underline{\maltese{\bf{\red{\:Diagram : - }}}}}}\end{gathered}

\setlength{\unitlength}{1cm}\begin{picture}(0,0)\thicklines\multiput(0,0)(5,0){2}{\line(0,1){3}}\multiput(0,0)(0,3){2}{\line(1,0){5}}\put(0.03,0.02){\framebox(0.25,0.25)}\put(0.03,2.75){\framebox(0.25,0.25)}\put(4.74,2.75){\framebox(0.25,0.25)}\put(4.74,0.02){\framebox(0.25,0.25)}\multiput(2.1,-0.7)(0,4.2){2}{\sf\large 25 m}\multiput(-1.4,1.4)(6.8,0){2}{\sf\large 20 m}\put(-0.5,-0.4){\bf A}\put(-0.5,3.2){\bf D}\put(5.3,-0.4){\bf B}\put(5.3,3.2){\bf C}\end{picture}

\begin{gathered}\end{gathered}

\begin{gathered}{\underline{\underline{\maltese{\bf{\red{\:Given : - }}}}}}\end{gathered}

  • → The width of a rectangle is four-fifth its length.
  • → The perimeter of rectangle is 90 m.

\begin{gathered}\end{gathered}

\begin{gathered}{\underline{\underline{\maltese{\bf{\red{\:To \: Find : - }}}}}}\end{gathered}

  • → Lenght of Rectangle
  • → Breadth of Rectangle

\begin{gathered}\end{gathered}

\begin{gathered}{\underline{\underline{\maltese{\bf{\red{\:Using \: Formula : - }}}}}}\end{gathered}

\small\bigstar{\underline{\boxed{\sf{Perimeter \:  of  \: rectangle =2\bigg(Length  + Breadth \bigg)}}}}

\begin{gathered}\end{gathered}

\begin{gathered}{\underline{\underline{\maltese{\bf{\red{\:Solution : - }}}}}}\end{gathered}

\small\bigstar Here, Let the :-

  • Breadth = x m
  • Length = ⅘x

\begin{gathered}\end{gathered}

\small\bigstar Now, According to the question :-

\small{\longrightarrow{\sf{Perimeter_{(Rectangle)} =2\bigg(Length  + Breadth \bigg)}}}

\small{\longrightarrow{\sf{90m =2\bigg(x  +  \dfrac{4}{5}x \bigg)}}}

\small{\longrightarrow{\sf{90m =2\bigg(\dfrac{(x \times 5) + (4x \times 1)}{5}\bigg)}}}

\small{\longrightarrow{\sf{90m =2\bigg(\dfrac{5x + 4x}{5}\bigg)}}}

\small{\longrightarrow{\sf{90m =2\bigg( \: \dfrac{9x}{5} \: \bigg)}}}

\small{\longrightarrow{\sf{\dfrac{90}{2}  =\dfrac{9x}{5} }}}

\small{\longrightarrow{\sf{\cancel{\dfrac{90}{2}}  =\dfrac{9x}{5} }}}

\small{\longrightarrow{\sf{45=\dfrac{9x}{5} }}}

\small{\longrightarrow{\sf{x = 45 \times  \dfrac{5}{9} }}}

\small{\longrightarrow{\sf{x =  \cancel{45} \times  \dfrac{5}{\cancel{9}}}}}

\small{\longrightarrow{\sf{x = 5 \times   5}}}

\small{\longrightarrow{\underline{\underline{\sf{x = 25 \: m}}}}}

\normalsize{\longrightarrow{\underline{\underline{\sf{\pink{x = 25 \: m}}}}}}

\begin{gathered}\end{gathered}

\small\bigstar Therefore :-

\quad{: \implies{\sf{Lenght = \bf{\purple{25 m}}}}}

\quad{:\implies{\sf{Breadth =  \dfrac{4}{5}  \times 25 = \dfrac{100}{5} =  \bf \purple{20m}}}}

Hence, the lenght of rectangle is 25m and the breadth of rectangle 20m.

\begin{gathered}\end{gathered}

\begin{gathered}{\underline{\underline{\maltese{\bf{\red{\:Verification : - }}}}}}\end{gathered}

\small\bigstar Let's check our answer :-

\small{\longrightarrow{\sf{Perimeter_{(Rectangle)} =2\bigg(Length  + Breadth \bigg)}}}

\small{\longrightarrow{\sf{90m =2\bigg(20  + 25\bigg)}}}

\small{\longrightarrow{\sf{90m =2\bigg( \:  45\: \bigg)}}}

\small{\longrightarrow{\sf{90m =2 \times 45}}}

\small{\longrightarrow{\sf{90m  = 90m}}}

\normalsize{\longrightarrow{\underline{\underline{\sf{\pink{LHS =RHS}}}}}}

Hence Verified!

\begin{gathered}\end{gathered}

\begin{gathered}{\underline{\underline{\maltese{\bf{\red{\:Learn  \: More : - }}}}}}\end{gathered}

\small\boxed{\begin{gathered} \dag\quad\underline{\underline{\bf Formulas\:of\:Areas}}\quad\dag\\ \\ \dashrightarrow\sf Square=(side)^2\\ \\ \dashrightarrow\sf Rectangle=Length\times Breadth \\\\ \dashrightarrow\sf Triangle=\dfrac{1}{2}\times Breadth\times Height \\\\ \dashrightarrow\sf Scalene\triangle=\sqrt {s (s-a)(s-b)(s-c)}\\ \\ \dashrightarrow\sf Rhombus =\dfrac {1}{2}\times d_1\times d_2 \\\\ \dashrightarrow\sf Rhombus =\:\dfrac {1}{2}p\sqrt {4a^2-p^2}\\ \\ \dashrightarrow\sf Parallelogram =Breadth\times Height\\\\ \dashrightarrow\sf Trapezium =\dfrac {1}{2}(a+b)\times Height \\ \\ \dashrightarrow\sf Equilateral\:Triangle=\dfrac {\sqrt{3}}{4}(side)^2\end{gathered}}

Similar questions