Math, asked by VIJAYSIVA9584, 9 months ago

The width of a rectangle is two-third of its length. If the perimeter is 180 meters ,find the dimensions of the rectangle.

Answers

Answered by mddilshad11ab
79

\huge{\underline{\purple{\rm{Solution:}}}}

\small{\underline{\red{\rm{Given:}}}}

\rm{The\: perimeter\:of\: rectangle=180\:m}

\large{\underline{\red{\rm{Let:}}}}

\rm{The\: length\:of\: rectangle=x\:m}

\rm{The\: breadth\:of\: rectangle=\frac{2}{3}x\:m}

\small{\underline{\red{\rm{To\: Find:}}}}

\rm{The\: dimensions\:of\: rectangle}

\small{\underline{\red{\rm{As\:per\:the\: above\: information:}}}}

\rm\purple{\implies Perimeter=2(l+b)}

\rm{\implies 2(x+\dfrac{2}{3}x)=180}

\rm{\implies 2(\dfrac{3x+2x}{3})=180}

\rm{\implies 2(\dfrac{5x}{3})=180}

\rm{\implies \cancel{10}x=\cancel{180}*3}

\rm{\implies x=18*3}

\rm\red{\implies x=54\:m}

Hence,

\rm\orange{\implies The\: length\:of\: rectangle=x=54\:m}

\rm{\implies The\: breadth\:of\: rectangle=\dfrac{2}{3}x=\dfrac{2}{3}*54}

\rm{\implies The\: breadth\:of\: rectangle=2*18\:m}

\rm\purple{\implies The\: breadth\:of\: rectangle=36\:m}

\huge{\underline{\purple{\rm{Verification:}}}}

\rm{\implies Perimeter\:of\: rectangle=2(l+b)}

\rm{\implies 2(54+36)=180}

\rm{\implies 2*90=180}

\rm\green{\implies 180=180}

\rm{\implies Hence,\:Verified}

Answered by Anonymous
62

Answer:

⋆ DIAGRAM :

\setlength{\unitlength}{1.5cm}\begin{picture}(8,2)\thicklines\put(7.7,3){\large{A}}\put(7.5,2){\large{$\sf{}^{2n}\!/{}_{3}$}}\put(7.7,1){\large{B}}\put(9.5,0.7){\sf{\large{n}}}\put(11.1,1){\large{C}}\put(8,1){\line(1,0){3}}\put(8,1){\line(0,2){2}}\put(11,1){\line(0,3){2}}\put(8,3){\line(3,0){3}}\put(11.1,3){\large{D}}\end{picture}

\rule{150}{1}

Let the Length be n and Width be n of the Rectangle respectively.

\underline{\bigstar\:\textbf{According to the Question :}}

:\implies\sf Perimeter_{(Rectangle)}=2(Length+Width)\\\\\\:\implies\sf 180\:m=2\bigg\lgroup n+\dfrac{2n}{3}\bigg\rgroup\\\\\\:\implies\sf 90\:m=\bigg\lgroup\dfrac{3n + 2n}{3}\bigg\rgroup\\\\\\:\implies\sf 90\:m= \dfrac{5n}{3} \\\\\\:\implies\sf 90\:m \times \dfrac{3}{5} = n\\\\\\:\implies\sf 18\:m \times 3 = n\\\\\\:\implies\underline{\boxed{\sf n = 54 \:m}}

\rule{180}{2}

\underline{\bigstar\:\textbf{Dimensions of the Rectangle :}}

\bullet\:\:\textsf{Length = n = \textbf{54 m}}\\\bullet\:\:\sf Width={}^{2n}\!/{}_{3}={}^{2(54)}\!/{}_{3}=\textsf{\textbf{36 m}}

Similar questions