Math, asked by shuaibmirzadl2845, 9 months ago

The width of a rectangular garden is two thirds of its length. If its perimeter is 40 m, find the width.

Answers

Answered by Anonymous
1

Answer:

let length be x and breadth be y

A/Q,

 =  >  y =  \frac{2}{3} x \\  \\ and \\  \\ perimeter = 40 \: m \\  =  > 2(x + y) = 40 \\  =  > 2(x +  \frac{2}{3} x) = 40 \\  =  >  \frac{5}{3} x = 20 \\  =  > x = 12 \: m \\ \\  then  \\  =  > y =  \frac{2}{3}x \\  =  > y =  \frac{2}{ 3} \times 12 \\   =  > y= 8\: m

therefore

length = 12 m

width = 8 m

Answered by sethrollins13
55

Given :

  • Width of Rectangular garden is two third of its length.
  • Perimeter of Rectangle = 40m

To Find :

  • Width of Rectangle.

Solution :

\longmapsto\tt{Let\:length\:be=x}

If Width of the rectangular garden is two third of its length. So ,

\longmapsto\tt{Width=\dfrac{2x}{3}}

Using Formula :

\longmapsto\tt\boxed{Perimeter\:of\:Rectangle=2(l+b)}

Putting Values :

\longmapsto\tt{40=2\dfrac{x}{1}+\dfrac{2x}{3}}

\longmapsto\tt{\cancel\dfrac{40}{2}=\dfrac{x}{1}+\dfrac{2x}{3}}

\longmapsto\tt{20=\dfrac{3x+2x}{3}}

\longmapsto\tt{20=\dfrac{5x}{3}}

\longmapsto\tt{x=\dfrac{\cancel{20}\times{3}}{\cancel{5}}}

\longmapsto\tt{x=4\times{3}}

\longmapsto\tt\bold{x=12}

Value of x is 12..

Therefore :

\longmapsto\tt\bold{Length=12m}

\longmapsto\tt{Width=\dfrac{2}{\cancel{3}}\times{\cancel{12}}}

\longmapsto\tt{4\times{2}}

\longmapsto\tt\bold{8m}

_______________________

VERIFICATION :

\longmapsto\tt{40=2(l+b)}

\longmapsto\tt{40=2(12+8)}

\longmapsto\tt{40=2(20)}

\longmapsto\tt\bold{40=40}

HENCE VERIFIED

Similar questions